Home
Class 12
MATHS
Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), whe...

Let `F_(k)(x)=1/k (sin^(k)x+cos^(k)x)`, where `x in R` and `k ge 1`, then find the value of `F_(4)(x)-F_(6)(x)`.

A

`(5)/(12)`

B

`(-1)/(12)`

C

`(1)/(4)`

D

`(1)/(12)`

Text Solution

Verified by Experts

The correct Answer is:
D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise EX-JM|7 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN|Exercise All Questions|115 Videos

Similar Questions

Explore conceptually related problems

Let f_k(x) = 1/k(sin^k x + cos^k x) where x in RR and k gt= 1. Then f_4(x) - f_6(x) equals

Let f_K(x)""=1/k(s in^k x+cos^k x) where x in R and kgeq1 . Then f_4(x)-f_6(x) equals (1) 1/6 (2) 1/3 (3) 1/4 (4) 1/(12)

The function f(x)={sinx/x +cosx , x!=0 and f(x) =k at x=0 is continuous at x=0 then find the value of k

Let f(x + y) = f(x) .f(y) AA x, y in R suppose that f(k) =3, k in R and f'(0) = 11 then find f'(k)

Let f(x+y)+f(x-y)=2f(x)f(y) AA x,y in R and f(0)=k , then

f(x)=[2x]sin3pixa n df^(prime)(k^(prime))=lambdakpi(-1)^k (where [.] denotes the greatest integer function and k in N), then find the value of lambda .

If f(x)=3x^(2)+k|sin x| is differentiable at x=0 then the value of k is-

Find the value of k, if (3x-4)/((x-3)(x+k))=(1)/(x-3)+(2)/(x+k)

Let f be a real valued function satisfying 2f(xy) = {f(x)}^(y) + {f(y)}^(x), AA x, y in R and f(1) = 2, then find underset(K = 1)overset(2008)sum f(K)

Let d/(dx) (F(x))= e^(sinx)/x, x>0 . If int_1^4 2e^sin(x^2)/x dx = F(k)-F(1) , then possible value of k is: