Home
Class 12
MATHS
Iftheta is eliminated from the equations...

If`theta` is eliminated from the equations `costheta-sintheta=b` and `cos3theta+sin3theta=a`,find the eliminant

Text Solution

AI Generated Solution

The correct Answer is:
To eliminate θ from the equations \( \cos \theta - \sin \theta = b \) and \( \cos 3\theta + \sin 3\theta = a \), we can follow these steps: ### Step 1: Square the first equation Starting with the first equation: \[ \cos \theta - \sin \theta = b \] Square both sides: \[ (\cos \theta - \sin \theta)^2 = b^2 \] Expanding the left side: \[ \cos^2 \theta - 2\cos \theta \sin \theta + \sin^2 \theta = b^2 \] Using the identity \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ 1 - 2\cos \theta \sin \theta = b^2 \] Rearranging gives: \[ 2\cos \theta \sin \theta = 1 - b^2 \] Thus, we find: \[ \cos \theta \sin \theta = \frac{1 - b^2}{2} \] ### Step 2: Use the second equation Now, consider the second equation: \[ \cos 3\theta + \sin 3\theta = a \] Using the formulas for \( \cos 3\theta \) and \( \sin 3\theta \): \[ \cos 3\theta = 4\cos^3 \theta - 3\cos \theta \] \[ \sin 3\theta = 3\sin \theta - 4\sin^3 \theta \] Thus, we can write: \[ (4\cos^3 \theta - 3\cos \theta) + (3\sin \theta - 4\sin^3 \theta) = a \] ### Step 3: Factor out \( \cos \theta - \sin \theta \) We can factor this expression: \[ 4\cos^3 \theta - 4\sin^3 \theta - 3(\cos \theta - \sin \theta) = a \] Using the identity for the difference of cubes: \[ a = (\cos \theta - \sin \theta)(4(\cos^2 \theta + \cos \theta \sin \theta + \sin^2 \theta) - 3) \] Since \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ a = (\cos \theta - \sin \theta)(4(1 + \cos \theta \sin \theta) - 3) \] Substituting \( \cos \theta \sin \theta = \frac{1 - b^2}{2} \): \[ a = (\cos \theta - \sin \theta)(4(1 + \frac{1 - b^2}{2}) - 3) \] This simplifies to: \[ a = (\cos \theta - \sin \theta)(4 + 2 - 2b^2 - 3) \] Thus: \[ a = (\cos \theta - \sin \theta)(3 - 2b^2) \] ### Step 4: Substitute \( \cos \theta - \sin \theta \) Now substituting \( \cos \theta - \sin \theta = b \): \[ a = b(3 - 2b^2) \] Rearranging gives: \[ 2b^3 - 3b + a = 0 \] ### Final Result The eliminant is: \[ 2b^3 - 3b + a = 0 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise EX -JA|8 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-S2|9 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN|Exercise All Questions|115 Videos

Similar Questions

Explore conceptually related problems

Solve the following equation: costheta+sintheta=cos2theta+sin2theta

If theta is eliminated from the equations a sec theta-x tan theta=y" and "b sec theta+y tan theta=x (a and b are constants), then :

Solve: sin2theta+sin4theta=costheta+cos3theta

If cosectheta-sintheta=m a n d sectheta-costheta=n ,"eliminate"theta

Sum to n terms the series costheta-sin2theta-cos3theta+sin4theta+cos5theta-……

Eliminate theta from a sin theta + bcos theta = x "and" a cos theta -b sin theta = y

Find the general value of theta from the equation costheta+cos2theta + cos3theta=0 .

Solve the following equation: sintheta+sin5theta=sin3theta

Solve the following equation: sintheta+sin2theta+sin3theta+sin4theta=0

If x=3costheta-cos^3theta y=3sintheta-sin^3theta find dy/dx