Home
Class 12
MATHS
Prove that : sin^(-1)(5/13) +cos ^(−1)...

Prove that : ` sin^(-1)(5/13) +cos ^(−1)(3/5)=tan (−1)(63/16)` ​

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( \sin^{-1}\left(\frac{5}{13}\right) + \cos^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{63}{16}\right) \), we can follow these steps: ### Step 1: Set Up the Equations Let: \[ x = \sin^{-1}\left(\frac{5}{13}\right) \] Then, we have: \[ \sin x = \frac{5}{13} \] ### Step 2: Find the Cosine of \( x \) Using the Pythagorean identity: \[ \cos^2 x + \sin^2 x = 1 \] Substituting \( \sin x \): \[ \cos^2 x + \left(\frac{5}{13}\right)^2 = 1 \] \[ \cos^2 x + \frac{25}{169} = 1 \] \[ \cos^2 x = 1 - \frac{25}{169} = \frac{169 - 25}{169} = \frac{144}{169} \] Thus, \[ \cos x = \frac{12}{13} \] ### Step 3: Set Up the Second Equation Now, let: \[ y = \cos^{-1}\left(\frac{3}{5}\right) \] Then, we have: \[ \cos y = \frac{3}{5} \] ### Step 4: Find the Sine of \( y \) Using the Pythagorean identity again: \[ \sin^2 y + \cos^2 y = 1 \] Substituting \( \cos y \): \[ \sin^2 y + \left(\frac{3}{5}\right)^2 = 1 \] \[ \sin^2 y + \frac{9}{25} = 1 \] \[ \sin^2 y = 1 - \frac{9}{25} = \frac{25 - 9}{25} = \frac{16}{25} \] Thus, \[ \sin y = \frac{4}{5} \] ### Step 5: Combine the Angles Now we need to find: \[ x + y = \sin^{-1}\left(\frac{5}{13}\right) + \cos^{-1}\left(\frac{3}{5}\right) \] ### Step 6: Use the Tangent Addition Formula We can express \( \tan(x + y) \) using the tangent addition formula: \[ \tan(x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y} \] Calculating \( \tan x \) and \( \tan y \): \[ \tan x = \frac{\sin x}{\cos x} = \frac{\frac{5}{13}}{\frac{12}{13}} = \frac{5}{12} \] \[ \tan y = \frac{\sin y}{\cos y} = \frac{\frac{4}{5}}{\frac{3}{5}} = \frac{4}{3} \] ### Step 7: Substitute into the Tangent Addition Formula Now substituting into the formula: \[ \tan(x + y) = \frac{\frac{5}{12} + \frac{4}{3}}{1 - \left(\frac{5}{12} \cdot \frac{4}{3}\right)} \] Finding a common denominator for the numerator: \[ \tan(x + y) = \frac{\frac{5}{12} + \frac{16}{12}}{1 - \frac{20}{36}} = \frac{\frac{21}{12}}{1 - \frac{5}{9}} \] Calculating the denominator: \[ 1 - \frac{5}{9} = \frac{9 - 5}{9} = \frac{4}{9} \] Thus, \[ \tan(x + y) = \frac{\frac{21}{12}}{\frac{4}{9}} = \frac{21 \cdot 9}{12 \cdot 4} = \frac{189}{48} = \frac{63}{16} \] ### Conclusion Since \( \tan(x + y) = \frac{63}{16} \), we have: \[ x + y = \tan^{-1}\left(\frac{63}{16}\right) \] Thus, we have proved that: \[ \sin^{-1}\left(\frac{5}{13}\right) + \cos^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{63}{16}\right) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Show that sin^(-1)(5/13)+cos^(-1)(3/5)=tan^(-1)(63/16) .

Prove that: sin^(-1) (12/13)+cos^(-1) (4/5)+tan^(-1) (63/16)=pi

Prove that: sin^(-1)(12)/(13)+cos^(-1)4/5+tan^(-1)(63)/(16)=pi

Prove that: sin^(-1)(8/17)+sin^(-1)(3/5)=tan^(-1)(77/36)

Prove that: sin^(-1)((12)/(13))+cos^(-1)(4/5)+tan^(-1)((63)/(16))=pi

Prove that: cos^(-1)(12/13)+sin^(-1)(3/5)=sin^(-1)(56/65)

Prove that: cos^(-1)(12/13)+sin^(-1)(3/5)=sin^(-1)(56/65)

Prove that: tan^(-1)(63/16)=sin^(-1)(5/13)+cos^(-1)(3/5)

Show that sin^(-1)(12)/(13)+cos^(-1)4/5+tan^(-1)(63)/(16)=pi .

Prove that : tan^(-1)(63/16)=sin^(-1)\(5/13)+cos^(-1)(3/5)