Home
Class 14
MATHS
Which is lim(xto0)(sinx-tanx)/(x) equa...

Which is `lim_(xto0)(sinx-tanx)/(x)` equal to ?

A

A. 0

B

B. 1

C

C. `-1`

D

D. `1//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\sin x - \tan x}{x} \), we will follow these steps: ### Step 1: Substitute \( x = 0 \) First, we will directly substitute \( x = 0 \) into the expression: \[ \frac{\sin(0) - \tan(0)}{0} = \frac{0 - 0}{0} = \frac{0}{0} \] This gives us an indeterminate form \( \frac{0}{0} \). **Hint:** If you encounter \( \frac{0}{0} \) when substituting, consider using L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that if \( \lim_{x \to a} \frac{f(x)}{g(x)} \) results in \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \), then: \[ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \] Here, let \( f(x) = \sin x - \tan x \) and \( g(x) = x \). ### Step 3: Differentiate the Numerator and Denominator Now we differentiate the numerator and the denominator: - The derivative of \( \sin x \) is \( \cos x \). - The derivative of \( \tan x \) is \( \sec^2 x \). - The derivative of \( x \) is \( 1 \). Thus, we have: \[ f'(x) = \cos x - \sec^2 x \] \[ g'(x) = 1 \] ### Step 4: Rewrite the Limit Now we can rewrite the limit using the derivatives: \[ \lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{\cos x - \sec^2 x}{1} \] ### Step 5: Substitute \( x = 0 \) Again Now, we substitute \( x = 0 \) into the new expression: \[ \cos(0) - \sec^2(0) = 1 - 1 = 0 \] ### Step 6: Apply L'Hôpital's Rule Again Since we still have \( \frac{0}{0} \), we apply L'Hôpital's Rule again: Differentiate the numerator again: - The derivative of \( \cos x \) is \( -\sin x \). - The derivative of \( \sec^2 x \) is \( 2\sec^2 x \tan x \). Thus, we have: \[ f''(x) = -\sin x - 2\sec^2 x \tan x \] Now, we rewrite the limit: \[ \lim_{x \to 0} \frac{-\sin x - 2\sec^2 x \tan x}{0} \] ### Step 7: Substitute \( x = 0 \) Again Now substitute \( x = 0 \): \[ -\sin(0) - 2\sec^2(0) \tan(0) = 0 - 0 = 0 \] ### Step 8: Final Application of L'Hôpital's Rule Since we still have \( \frac{0}{0} \), we apply L'Hôpital's Rule one more time. After differentiating again and substituting \( x = 0 \), we will eventually find that: \[ \lim_{x \to 0} \frac{\sin x - \tan x}{x} = 0 \] ### Conclusion Thus, the limit is: \[ \boxed{0} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMIT

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |43 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|35 Videos
  • LOGARITHM

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|24 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0)(|sin x|)/x is equal to :

lim_(xto0)(a^(x)-b^(x))/(x) equal to ?

Knowledge Check

  • lim_(x to 0) (sinx-tanx)/(x) equal to?

    A
    0
    B
    1
    C
    -1
    D
    `1//2`
  • lim_(xto0)(sin|x|)/(x) equal to ?

    A
    1
    B
    `-1`
    C
    `oo`
    D
    Limit D.N.E.
  • What is lim_(xto0)(tanx)/(sin2x) equal to ?

    A
    `1//2`
    B
    1
    C
    2
    D
    Limit does not exist
  • Similar Questions

    Explore conceptually related problems

    What is lim_(xto0)(sin2x+4x)/(2x+sin4x) equal to ?

    lim_(xto0)(xcosx-sinx)/(x^(2)sinx) equal to ?

    What is lim_(xto0) (sin2x+4x)/(2x+sin4x) equal to ?

    What is lim_(xto0) (a^(x)-b^(x))/(x) equal to?

    What is lim_(xto0) x^(2)sin((1)/(x)) equal to?