Home
Class 14
MATHS
The simplest value of (3sqrt(8)-2sqrt(12...

The simplest value of `(3sqrt(8)-2sqrt(12)+sqrt(20))/(3sqrt(18)-2sqrt(27)+sqrt(45))` is :

A

A) `(3)/(2)`

B

B) `(2)/(3)`

C

C) `(1)/(3)`

D

D) `2`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((3\sqrt{8} - 2\sqrt{12} + \sqrt{20}) / (3\sqrt{18} - 2\sqrt{27} + \sqrt{45})\), we will follow these steps: ### Step 1: Simplify the square roots in the numerator 1. **Calculate \(\sqrt{8}\)**: \[ \sqrt{8} = \sqrt{4 \times 2} = 2\sqrt{2} \] Therefore, \(3\sqrt{8} = 3 \times 2\sqrt{2} = 6\sqrt{2}\). 2. **Calculate \(\sqrt{12}\)**: \[ \sqrt{12} = \sqrt{4 \times 3} = 2\sqrt{3} \] Therefore, \(-2\sqrt{12} = -2 \times 2\sqrt{3} = -4\sqrt{3}\). 3. **Calculate \(\sqrt{20}\)**: \[ \sqrt{20} = \sqrt{4 \times 5} = 2\sqrt{5} \] Therefore, \(\sqrt{20} = 2\sqrt{5}\). Now, substituting these back into the numerator: \[ 3\sqrt{8} - 2\sqrt{12} + \sqrt{20} = 6\sqrt{2} - 4\sqrt{3} + 2\sqrt{5} \] ### Step 2: Simplify the square roots in the denominator 1. **Calculate \(\sqrt{18}\)**: \[ \sqrt{18} = \sqrt{9 \times 2} = 3\sqrt{2} \] Therefore, \(3\sqrt{18} = 3 \times 3\sqrt{2} = 9\sqrt{2}\). 2. **Calculate \(\sqrt{27}\)**: \[ \sqrt{27} = \sqrt{9 \times 3} = 3\sqrt{3} \] Therefore, \(-2\sqrt{27} = -2 \times 3\sqrt{3} = -6\sqrt{3}\). 3. **Calculate \(\sqrt{45}\)**: \[ \sqrt{45} = \sqrt{9 \times 5} = 3\sqrt{5} \] Therefore, \(\sqrt{45} = 3\sqrt{5}\). Now, substituting these back into the denominator: \[ 3\sqrt{18} - 2\sqrt{27} + \sqrt{45} = 9\sqrt{2} - 6\sqrt{3} + 3\sqrt{5} \] ### Step 3: Combine the results The expression now looks like this: \[ \frac{6\sqrt{2} - 4\sqrt{3} + 2\sqrt{5}}{9\sqrt{2} - 6\sqrt{3} + 3\sqrt{5}} \] ### Step 4: Factor out common terms We can factor out common terms from both the numerator and the denominator: - In the numerator, we can factor out \(2\): \[ 2(3\sqrt{2} - 2\sqrt{3} + \sqrt{5}) \] - In the denominator, we can factor out \(3\): \[ 3(3\sqrt{2} - 2\sqrt{3} + \sqrt{5}) \] ### Step 5: Simplify the fraction Now we can simplify the expression: \[ \frac{2(3\sqrt{2} - 2\sqrt{3} + \sqrt{5})}{3(3\sqrt{2} - 2\sqrt{3} + \sqrt{5})} = \frac{2}{3} \] ### Final Answer The simplest value of the expression is: \[ \frac{2}{3} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

sqrt(45)-3sqrt(20)+4sqrt(5)

(4sqrt(3)+5sqrt(2))/(sqrt(48)+sqrt(18))

Knowledge Check

  • The simplest value of (3sqrt8 - 2 sqrt12 + sqrt20)/(3 sqrt18 - 2 sqrt 27 + sqrt45)

    A
    `3/2`
    B
    `2/3`
    C
    `1/3`
    D
    `2`
  • The value of sqrt(( sqrt(12) -sqrt(8))(sqrt(3)+sqrt(2))/(5+sqrt(24)) is

    A
    `sqrt(6)-sqrt(2)`
    B
    `sqrt(6)+sqrt(2)`
    C
    `sqrt(6)-2`
    D
    `2 - sqrt(6)`
  • The value of sqrt((sqrt(12)- sqrt(8))(sqrt(3) + sqrt(2)))/(5+sqrt(24)) is:

    A
    `sqrt(6) - sqrt(2)`
    B
    `sqrt(6) + sqrt(2)`
    C
    `sqrt(6)-2`
    D
    `2-sqrt(6)`
  • Similar Questions

    Explore conceptually related problems

    The value of 4sqrt3-3sqrt12+2sqrt75

    The value of sqrt(((sqrt(12)-sqrt(8))(sqrt(3)+sqrt(2)))/(5+sqrt(24))) is :

    The simplified value of (sqrt(3)+1)(10+sqrt(12))(sqrt(12)-2)(5-sqrt(3)) is

    The approximate value of (3sqrt(12))/(2sqrt(28))+(2sqrt(21))/(sqrt(98)) is

    The value of sqrt((3sqrt(9)-3sqrt(8))(9+2sqrt(18))) is :