Home
Class 12
MATHS
If Delta stands for the area of a triang...

If `Delta` stands for the area of a triangle ABC , then `a^2 sin 2B+b^2 sin2A=`

A

`3 Delta`

B

`2 Delta`

C

`4 Delta`

D

`-4 Delta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a^2 \sin 2B + b^2 \sin 2A \) where \( \Delta \) stands for the area of triangle \( ABC \), we can follow these steps: ### Step 1: Use the double angle identity for sine Recall that: \[ \sin 2\theta = 2 \sin \theta \cos \theta \] Applying this to \( \sin 2B \) and \( \sin 2A \): \[ \sin 2B = 2 \sin B \cos B \quad \text{and} \quad \sin 2A = 2 \sin A \cos A \] Thus, we can rewrite the expression: \[ a^2 \sin 2B + b^2 \sin 2A = a^2 (2 \sin B \cos B) + b^2 (2 \sin A \cos A) \] This simplifies to: \[ 2a^2 \sin B \cos B + 2b^2 \sin A \cos A \] ### Step 2: Substitute the area of the triangle The area \( \Delta \) of triangle \( ABC \) can be expressed using the formula: \[ \Delta = \frac{1}{2}ab \sin C \] Using the sine rule, we can express \( \sin A \) and \( \sin B \) in terms of the area: \[ \sin A = \frac{2\Delta}{bc} \quad \text{and} \quad \sin B = \frac{2\Delta}{ac} \] Substituting these into our expression gives: \[ 2a^2 \left(\frac{2\Delta}{ac}\right) \cos B + 2b^2 \left(\frac{2\Delta}{bc}\right) \cos A \] This simplifies to: \[ \frac{4a\Delta}{c} \cos B + \frac{4b\Delta}{c} \cos A \] ### Step 3: Factor out common terms Now, we can factor out \( \frac{4\Delta}{c} \): \[ \frac{4\Delta}{c} \left(a \cos B + b \cos A\right) \] ### Step 4: Use the projection formula From the projection formula in triangles, we know: \[ a \cos B + b \cos A = c \] Thus, we can substitute this back into our expression: \[ \frac{4\Delta}{c} \cdot c = 4\Delta \] ### Final Result Therefore, we have: \[ a^2 \sin 2B + b^2 \sin 2A = 4\Delta \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (1)(TRUE AND FALSE)|3 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (1)(FILL IN THE BLANKS)|10 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

If Delta denotes the area of DeltaABC , then b^(2) sin 2C + c^(2) sin 2B is equal to

In a triangle ABC, 2ac sin ((A-B+C)/2) =

Knowledge Check

  • In a right angled triangle ABC sin^2 A+sin^2 B+sin^2C=

    A
    0
    B
    1
    C
    `-1`
    D
    2
  • In a triangle ABC, 2ac sin"1/2(A-B+C)=

    A
    `a^2+b^2-c^2`
    B
    `c^2+a^2-b^2`
    C
    `b^2-c^2-a^2`
    D
    `c^2-a^2-b^2`
  • In a triangle ABC, abc s sin "" A/2 sin ""B/2 sin "" C/2=

    A
    `Delta^2`
    B
    `3Delta^2`
    C
    `Delta^3`
    D
    none
  • Similar Questions

    Explore conceptually related problems

    In triangle ABC , prove that b^2sin2C+c^2sin2B=2bcsinA .

    In a triangle ABC , prove that ,(sinA+sinB)/2lt=sin((A+B)/2)

    In a triangle ABC,2ac sin((1)/(2))(A-B+C)=

    In a triangle ABC,which of the following quantities denote the area of the triangles a^(2)-b^(2),sin A sin Bhline

    Verify area of triangle is (i) abc/4R (ii) 2R^(^^)2 sinA sin B sin C