Home
Class 12
MATHS
(cos^2""(B-C)/2)/((b+c)^2)+(sin^2""(B-C)...

`(cos^2""(B-C)/2)/((b+c)^2)+(sin^2""(B-C)/2)/((b-c)^2)=........`

Text Solution

Verified by Experts

The correct Answer is:
`1/a^2`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(MULTIPLE CHOICE QUESTIONS)|49 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(TRUE AND FALSE)|2 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (1)(TRUE AND FALSE)|3 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

In any triangle ABC, prove that (i) (a-b)/( c)=("sin"(A-B)/(2))/("cos"( C)/(2)) (ii) (b-c)/(a)=("sin"(B-C)/(2))/("cos"(A)/(2))

If a ,b ,c denote the lengths of the sides of a triangle opposite to angles A ,B ,C respectively of a A B C , then the correct relation among a ,b , cA ,Ba n dC is given by (b+c)sin((B+C)/2)=acos b. (b-c)cos(A/2)=asin((B-C)/2) c. (b-c)cos(A/2)=2asin((B-C)/2) d. (b-c)sin((B-C)/2)="a c o s"A/2

If : A+B+C= pi "then" : 1 - sin^(2)""(A)/(2) - sin^(2)""(B)/(2)+ sin^(2)""(C)/(2)= A) 2cos""(A)/(2) * cos sin ^(2)""(B)/(2) + sin^(2)""(C)/(2) B) 2 cos ""(B)/(2)* cos ""(B)/(2) * sin""(C)/(2) C) 2 cos ""(C)/(2)* cos ""(A)/(2) * sin""(B)/(2) D) 2 cos ""(A)/(2)* cos ""(B)/(2) * sin""(C)/(2)

In triangle ABC,a,b,c are the lengths of its sides and A,B,C are the angles of triangle ABC .The correct relation is given by (a) (b-c)sin((B-C)/(2))=a(cos A)/(2) (b) (b-c)cos((A)/(2))=as in(B-C)/(2)(c)(b+c)sin((B+C)/(2))=a(cos A)/(2)(d)(b-c)cos((A)/(2))=2a(sin(B+C))/(2)

If a,b,c are sides opposte to the angles A,B , C then which of the following is correct (1)(b+c)cos((A)/(2))=a sin((B+C)/(2))(2)(b+c)cos((B+C)/(2))=a sin((A)/(2))(3)(b-c)cos((B-C)/(2))=a(cos A)/(2)(4)(b-c)cos((A)/(2))=a sin((B-C)/(2))

a (cos B + cos C) = 2 (b + c) sin ^ (2) ((A) / (2))

Prove that (a sin(B-C))/(b^(2)-c^(2))=(b sin(C-A))/(c^(2)-a^(2))=(c sin(A-B))/(a^(2)-b^(2))

If A+B+C=180^(@), then prove that cos^(2)(A)/(2)+cos^(2)(B)/(2)+cos^(2)(C)/(2)=2(1+sin(A)/(2)sin(B)/(2)sin(C)/(2))

If the sides a,b and C of o+ABC are in A.P.,prove that 2sin(A)/(2)sin(C)/(2)=sin(B)/(2)a cos^(2)(C)/(2)+cos^(2)(A)/(2)=(3b)/(2)