Home
Class 12
MATHS
(cos^2""(B-C)/2)/((b+c)^2)+(sin^2""(B-C)...

`(cos^2""(B-C)/2)/((b+c)^2)+(sin^2""(B-C)/2)/((b-c)^2)=........`

Text Solution

Verified by Experts

The correct Answer is:
`1/a^2`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(MULTIPLE CHOICE QUESTIONS)|49 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(TRUE AND FALSE)|2 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (1)(TRUE AND FALSE)|3 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

In any triangle ABC, prove that (i) (a-b)/( c)=("sin"(A-B)/(2))/("cos"( C)/(2)) (ii) (b-c)/(a)=("sin"(B-C)/(2))/("cos"(A)/(2))

If a ,b ,c denote the lengths of the sides of a triangle opposite to angles A ,B ,C respectively of a A B C , then the correct relation among a ,b , cA ,Ba n dC is given by (b+c)sin((B+C)/2)=acos b. (b-c)cos(A/2)=asin((B-C)/2) c. (b-c)cos(A/2)=2asin((B-C)/2) d. (b-c)sin((B-C)/2)="a c o s"A/2

Knowledge Check

  • If : A+B+C= pi "then" : 1 - sin^(2)""(A)/(2) - sin^(2)""(B)/(2)+ sin^(2)""(C)/(2)= A) 2cos""(A)/(2) * cos sin ^(2)""(B)/(2) + sin^(2)""(C)/(2) B) 2 cos ""(B)/(2)* cos ""(B)/(2) * sin""(C)/(2) C) 2 cos ""(C)/(2)* cos ""(A)/(2) * sin""(B)/(2) D) 2 cos ""(A)/(2)* cos ""(B)/(2) * sin""(C)/(2)

    A
    `2cos""(A)/(2) * cos sin ^(2)""(B)/(2) + sin^(2)""(C)/(2)`
    B
    `2 cos ""(B)/(2)* cos ""(B)/(2) * sin""(C)/(2)`
    C
    `2 cos ""(C)/(2)* cos ""(A)/(2) * sin""(B)/(2)`
    D
    `2 cos ""(A)/(2)* cos ""(B)/(2) * sin""(C)/(2)`
  • Similar Questions

    Explore conceptually related problems

    In triangle ABC,a,b,c are the lengths of its sides and A,B,C are the angles of triangle ABC .The correct relation is given by (a) (b-c)sin((B-C)/(2))=a(cos A)/(2) (b) (b-c)cos((A)/(2))=as in(B-C)/(2)(c)(b+c)sin((B+C)/(2))=a(cos A)/(2)(d)(b-c)cos((A)/(2))=2a(sin(B+C))/(2)

    If a,b,c are sides opposte to the angles A,B , C then which of the following is correct (1)(b+c)cos((A)/(2))=a sin((B+C)/(2))(2)(b+c)cos((B+C)/(2))=a sin((A)/(2))(3)(b-c)cos((B-C)/(2))=a(cos A)/(2)(4)(b-c)cos((A)/(2))=a sin((B-C)/(2))

    a (cos B + cos C) = 2 (b + c) sin ^ (2) ((A) / (2))

    Prove that (a sin(B-C))/(b^(2)-c^(2))=(b sin(C-A))/(c^(2)-a^(2))=(c sin(A-B))/(a^(2)-b^(2))

    If A+B+C=180^(@), then prove that cos^(2)(A)/(2)+cos^(2)(B)/(2)+cos^(2)(C)/(2)=2(1+sin(A)/(2)sin(B)/(2)sin(C)/(2))

    If A,B and C are angles of a triangle, then prove that E=(cos ((B-C)/(2)))/(cos ((B+C)/(2)))+ (cos ((C-A)/(2)))/(cos ((C+A)/(2)))+(cos ((A-B)/(2)))/(cos ((A+B)/(2)))ge6

    If the sides a,b and C of o+ABC are in A.P.,prove that 2sin(A)/(2)sin(C)/(2)=sin(B)/(2)a cos^(2)(C)/(2)+cos^(2)(A)/(2)=(3b)/(2)