Home
Class 12
MATHS
If in a triangle ABC, cos A sin B= sin C...

If in a triangle ABC, `cos A sin B= sin C`, then the value of `tan""A/2 " when " 3b-5c=0` is

A

`1/2`

B

`3/4`

C

`1/sqrt3`

D

`0.33`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan \frac{A}{2} \) given that \( \cos A \sin B = \sin C \) and \( 3B - 5C = 0 \). ### Step-by-Step Solution: 1. **Use the given condition**: We know that \( 3B - 5C = 0 \). This implies: \[ 3B = 5C \quad \text{or} \quad \frac{B}{C} = \frac{5}{3} \] 2. **Apply the sine rule**: According to the sine rule, we have: \[ \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} = k \quad (\text{some constant } k) \] From this, we can express \( \sin B \) and \( \sin C \) in terms of \( k \): \[ \sin B = kb \quad \text{and} \quad \sin C = kc \] 3. **Relate \( \sin B \) and \( \sin C \)**: Since \( \frac{B}{C} = \frac{5}{3} \), we can write: \[ \frac{\sin B}{\sin C} = \frac{5}{3} \] Substituting the expressions from the sine rule: \[ \frac{kb}{kc} = \frac{5}{3} \quad \Rightarrow \quad \frac{b}{c} = \frac{5}{3} \] 4. **Substitute into the equation**: We are given that \( \cos A \sin B = \sin C \). Substituting for \( \sin B \) and \( \sin C \): \[ \cos A \cdot kb = kc \] Dividing both sides by \( k \) (assuming \( k \neq 0 \)): \[ \cos A \cdot b = c \] 5. **Express \( \cos A \)**: From the previous step, we can express \( \cos A \): \[ \cos A = \frac{c}{b} \] 6. **Substitute the ratio**: We know \( \frac{b}{c} = \frac{5}{3} \), which gives us: \[ \frac{c}{b} = \frac{3}{5} \] Thus, we have: \[ \cos A = \frac{3}{5} \] 7. **Use the half-angle formula**: We will use the half-angle formula for cosine: \[ \cos A = \frac{1 - \tan^2 \frac{A}{2}}{1 + \tan^2 \frac{A}{2}} \] Setting \( \cos A = \frac{3}{5} \): \[ \frac{1 - \tan^2 \frac{A}{2}}{1 + \tan^2 \frac{A}{2}} = \frac{3}{5} \] 8. **Cross-multiply and simplify**: Cross-multiplying gives: \[ 5(1 - \tan^2 \frac{A}{2}) = 3(1 + \tan^2 \frac{A}{2}) \] Expanding both sides: \[ 5 - 5\tan^2 \frac{A}{2} = 3 + 3\tan^2 \frac{A}{2} \] Rearranging terms: \[ 5 - 3 = 5\tan^2 \frac{A}{2} + 3\tan^2 \frac{A}{2} \] \[ 2 = 8\tan^2 \frac{A}{2} \] 9. **Solve for \( \tan^2 \frac{A}{2} \)**: Dividing both sides by 8: \[ \tan^2 \frac{A}{2} = \frac{1}{4} \] Taking the square root gives: \[ \tan \frac{A}{2} = \frac{1}{2} \] ### Final Answer: Thus, the value of \( \tan \frac{A}{2} \) is \( \frac{1}{2} \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (1)(TRUE AND FALSE)|3 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (1)(FILL IN THE BLANKS)|10 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC, if cos A cos B+sin A sin B sin C=1, then a:b:c is equal to

If in a triangle ABC,(sin A)/(4)=(sin B)/(5)=(sin C)/(6), the value of cos A+cos B+cos C is equal to

Knowledge Check

  • If in a triangle ABC , sin A =cos B , then the value of cos C is

    A
    `(sqrt(3))/(2)`
    B
    0
    C
    1
    D
    `(1)/(sqrt(2))`
  • If in a triangle ABC,cos A = (sin B)/(2 sin C) , then the triangle is

    A
    equilateral
    B
    isosceles
    C
    right angled
    D
    none of these
  • If in a Delta ABC, cos B = (sin A)/(2 sin C), then the triangle is

    A
    Isosceles triangle
    B
    Equilateral triangle
    C
    Right angled triangle
    D
    Scalene triangle
  • Similar Questions

    Explore conceptually related problems

    In a triangle ABC, if sin A sin(B-C)=sinC sin(A-B) , then prove that cos 2A,cos2B and cos 2C are in AP.

    In any triangle ABC, if sin A , sin B, sin C are in AP, then the maximum value of tan ""B/2 is

    In a triangle ABC if tan : tan B : tan C = 3:4:5 then the value of sin A sin B sin C is

    If cos A = (sin B)/(2 sin C) , then Delta ABC is

    If : 2 sin B cdot cos C = sin A, then Delta ABC is