Home
Class 12
MATHS
If in a triangle ABC, cos A sin B= sin C...

If in a triangle ABC, `cos A sin B= sin C`, then the value of `tan""A/2 " when " 3b-5c=0` is

A

`1/2`

B

`3/4`

C

`1/sqrt3`

D

`0.33`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan \frac{A}{2} \) given that \( \cos A \sin B = \sin C \) and \( 3B - 5C = 0 \). ### Step-by-Step Solution: 1. **Use the given condition**: We know that \( 3B - 5C = 0 \). This implies: \[ 3B = 5C \quad \text{or} \quad \frac{B}{C} = \frac{5}{3} \] 2. **Apply the sine rule**: According to the sine rule, we have: \[ \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} = k \quad (\text{some constant } k) \] From this, we can express \( \sin B \) and \( \sin C \) in terms of \( k \): \[ \sin B = kb \quad \text{and} \quad \sin C = kc \] 3. **Relate \( \sin B \) and \( \sin C \)**: Since \( \frac{B}{C} = \frac{5}{3} \), we can write: \[ \frac{\sin B}{\sin C} = \frac{5}{3} \] Substituting the expressions from the sine rule: \[ \frac{kb}{kc} = \frac{5}{3} \quad \Rightarrow \quad \frac{b}{c} = \frac{5}{3} \] 4. **Substitute into the equation**: We are given that \( \cos A \sin B = \sin C \). Substituting for \( \sin B \) and \( \sin C \): \[ \cos A \cdot kb = kc \] Dividing both sides by \( k \) (assuming \( k \neq 0 \)): \[ \cos A \cdot b = c \] 5. **Express \( \cos A \)**: From the previous step, we can express \( \cos A \): \[ \cos A = \frac{c}{b} \] 6. **Substitute the ratio**: We know \( \frac{b}{c} = \frac{5}{3} \), which gives us: \[ \frac{c}{b} = \frac{3}{5} \] Thus, we have: \[ \cos A = \frac{3}{5} \] 7. **Use the half-angle formula**: We will use the half-angle formula for cosine: \[ \cos A = \frac{1 - \tan^2 \frac{A}{2}}{1 + \tan^2 \frac{A}{2}} \] Setting \( \cos A = \frac{3}{5} \): \[ \frac{1 - \tan^2 \frac{A}{2}}{1 + \tan^2 \frac{A}{2}} = \frac{3}{5} \] 8. **Cross-multiply and simplify**: Cross-multiplying gives: \[ 5(1 - \tan^2 \frac{A}{2}) = 3(1 + \tan^2 \frac{A}{2}) \] Expanding both sides: \[ 5 - 5\tan^2 \frac{A}{2} = 3 + 3\tan^2 \frac{A}{2} \] Rearranging terms: \[ 5 - 3 = 5\tan^2 \frac{A}{2} + 3\tan^2 \frac{A}{2} \] \[ 2 = 8\tan^2 \frac{A}{2} \] 9. **Solve for \( \tan^2 \frac{A}{2} \)**: Dividing both sides by 8: \[ \tan^2 \frac{A}{2} = \frac{1}{4} \] Taking the square root gives: \[ \tan \frac{A}{2} = \frac{1}{2} \] ### Final Answer: Thus, the value of \( \tan \frac{A}{2} \) is \( \frac{1}{2} \).
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (1)(TRUE AND FALSE)|3 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (1)(FILL IN THE BLANKS)|10 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

If in a triangle ABC , sin A =cos B , then the value of cos C is

If in a Delta ABC, cos B = (sin A)/(2 sin C), then the triangle is

In any triangle ABC, if sin A , sin B, sin C are in AP, then the maximum value of tan ""B/2 is

In a triangle ABC, if cos A cos B+sin A sin B sin C=1, then a:b:c is equal to

If in a triangle ABC,(sin A)/(4)=(sin B)/(5)=(sin C)/(6), the value of cos A+cos B+cos C is equal to

If cos A = (sin B)/(2 sin C) , then Delta ABC is

In a triangle ABC, if sin A sin(B-C)=sinC sin(A-B) , then prove that cos 2A,cos2B and cos 2C are in AP.

If : 2 sin B cdot cos C = sin A, then Delta ABC is

ML KHANNA-PROPERTIES OF TRIANGLES -Self Assessment Test (Multiple Choise Questions)
  1. If in a triangle ABC, cos A sin B= sin C, then the value of tan""A/2 "...

    Text Solution

    |

  2. If in Delta ABC, (a -b) (s-c) = (b -c) (s-a), prove that r(1), r(2), r...

    Text Solution

    |

  3. If r1,r2 ,r3 are in H.P. then the sides are in

    Text Solution

    |

  4. If P1, P2, P3 be the perpendiculars from the vertices of a triangle to...

    Text Solution

    |

  5. If p(2),p(2),p(3) are the perpendiculars from the vertices of a triang...

    Text Solution

    |

  6. Prove that a cos A + b cos B + c cos C = 4 R sin A sin B sin C.

    Text Solution

    |

  7. r2 r3 + r3 r1 + r1 r2 =S^2 // r^2, true or false?

    Text Solution

    |

  8. If a triangle of maximum area is inscribed within a circle of radius R...

    Text Solution

    |

  9. If the sides of a triangle are in A.P. as well as in G.P., then the va...

    Text Solution

    |

  10. Two sides of a triangle are the roots of the equation x^2 - 5x +6=0. I...

    Text Solution

    |

  11. If r1, lt r2, lt r3 are the ex-radii of a right angled triangle and r1...

    Text Solution

    |

  12. Given an isoceles triangle, whose one angle is 120^@ and radius of its...

    Text Solution

    |

  13. AD is internal angle bisector of DeltaABC " at " angleA and DE perpend...

    Text Solution

    |

  14. Consider a triangle ABC and let a , b , and c denote the lengths of t...

    Text Solution

    |

  15. In triangleABC, if a^(2)+c^(2)-b^(2)=ac, then angleB=

    Text Solution

    |

  16. In Delta ABC if a= 16 , b= 24 and c = 20 then cos (B/2)

    Text Solution

    |

  17. In Delta ABC, cscA (sin B cos C + cos B sin C) =

    Text Solution

    |

  18. If in a triangles a cos^(2)(C/2)+c cos^(2)(A/2)=(3b)/2, then the sides...

    Text Solution

    |

  19. In triangleABC, If the anlges are in A.P., and b:c=sqrt(3):sqrt(2), t...

    Text Solution

    |

  20. If the angles of a triangle are in the ratio 2 : 3 : 7 ,then the sides...

    Text Solution

    |

  21. If in a right angled triangle the hypotenuse is four times as long as ...

    Text Solution

    |