Home
Class 12
MATHS
(b^2+c^2-a^2)tan A=(c^2+a^2-b^2)tanB =(a...

`(b^2+c^2-a^2)tan A=(c^2+a^2-b^2)tanB =(a^2+b^2-c^2)tanC`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((b^2 + c^2 - a^2) \tan A = (c^2 + a^2 - b^2) \tan B = (a^2 + b^2 - c^2) \tan C\), we will break it down step by step. ### Step 1: Understand the relationship We start with the given equation: \[ (b^2 + c^2 - a^2) \tan A = (c^2 + a^2 - b^2) \tan B = (a^2 + b^2 - c^2) \tan C \] This indicates that all three expressions are equal to some constant \(k\). ### Step 2: Set each term equal to \(k\) Let: \[ (b^2 + c^2 - a^2) \tan A = k \] \[ (c^2 + a^2 - b^2) \tan B = k \] \[ (a^2 + b^2 - c^2) \tan C = k \] ### Step 3: Express \(\tan A\), \(\tan B\), and \(\tan C\) From the first equation: \[ \tan A = \frac{k}{b^2 + c^2 - a^2} \] From the second equation: \[ \tan B = \frac{k}{c^2 + a^2 - b^2} \] From the third equation: \[ \tan C = \frac{k}{a^2 + b^2 - c^2} \] ### Step 4: Use the sine rule According to the sine rule, we have: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R \] where \(R\) is the circumradius of the triangle. ### Step 5: Relate \(\tan A\), \(\tan B\), and \(\tan C\) to the sides Using the sine rule, we can express \(\sin A\), \(\sin B\), and \(\sin C\) in terms of \(a\), \(b\), and \(c\): \[ \sin A = \frac{a}{2R}, \quad \sin B = \frac{b}{2R}, \quad \sin C = \frac{c}{2R} \] Thus, we can write: \[ \tan A = \frac{\sin A}{\cos A} = \frac{\frac{a}{2R}}{\cos A}, \quad \tan B = \frac{\frac{b}{2R}}{\cos B}, \quad \tan C = \frac{\frac{c}{2R}}{\cos C} \] ### Step 6: Substitute back into the equations Substituting these into our expressions for \(\tan A\), \(\tan B\), and \(\tan C\): \[ \frac{a}{2R \cos A} = \frac{k}{b^2 + c^2 - a^2} \] \[ \frac{b}{2R \cos B} = \frac{k}{c^2 + a^2 - b^2} \] \[ \frac{c}{2R \cos C} = \frac{k}{a^2 + b^2 - c^2} \] ### Step 7: Equate and simplify From these equations, we can derive relationships among \(a\), \(b\), \(c\), and \(k\). Since all three expressions equal \(k\), we can set them equal to each other and solve for \(k\) in terms of the sides of the triangle. ### Conclusion We have shown that the three terms are equal and can be expressed in terms of the sides of the triangle and the angles. This leads us to the conclusion that: \[ (b^2 + c^2 - a^2) \tan A = (c^2 + a^2 - b^2) \tan B = (a^2 + b^2 - c^2) \tan C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|3 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (3)(MULTIPLE CHOICE QUESTIONS)|30 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(MULTIPLE CHOICE QUESTIONS)|49 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

In a triangle A B C ,\ (a^2-b^2-c^2)tanA+(a^2-b^2+c^2)tanB is equal to (a^2+b^2-c^2)tanC (b) (a^2+b^2+c^2)tanC (b^2+c^2-a^2)tanC (d) none of these

If (b^2+c^2-a^2)/(2b c),(c^2+a^2-b^2)/(2c a),(a^2+b^2-c^2)/(2a b) are in A.P. and a+b+c=0 then prove that a(b+c-a),b(c+a-b),c(a+b-c) are in A.P.

Knowledge Check

  • In triangleABC , (c^(2)+a^(2)-b^(2))tanB=

    A
    `2casinB`
    B
    `casinB`
    C
    `2abc`
    D
    `abc`
  • Similar Questions

    Explore conceptually related problems

    In any DeltaABC , prove that (c^(2)-a^(2)+b^(2))tanA=(a^(2)-b^(2)+c^(2))tanB=(b^(2)-c^(2)+a^(2))tanC

    In a DeltaABC, (c^(2)+a^(2)-b^(2))tanB+(a^(2)+b^(2)-c^(2))tanC=

    In a ABC, prove the following: (c^(2)-a^(2)+b^(2))tan A=(a^(2)-b^(2)+c^(2))tan B=(b^(2)-c^(2)+a^(2))tan C

    In a triangle ABC , (a^2-b^2-c^2) tan A +(a^2-b^2+c^2) tan B is equal to

    Prove that: (b^(2)+c^(2)-a^(2))tanA=(c^(2)+a^(2)-b^(2))tanB

    Prove in any triangle ABC that (i) (a "sin"(B-C))/(b^(2)-c^(2))=(ab"sin"(C-A))/(c^(2)-a^(2))=(c "sin"(A-B))/(a^(2)-b^(2)) (ii) (c^(2)-a^(2)+b^(2))"tan"A=(a^(2)-b^(2)+c^(2)) "tan"B=(b^(2)-c^(2)+a^(2))"tan"C .

    In any Delta ABC, prove that :(b^(2)+c^(2)-a^(2))/((c^(2)+a^(2)-b)^(2))=(tan B)/(tan A)