Home
Class 12
MATHS
If: cos A/2 = sqrt((b+c)/(2c)), then c^(...

If: `cos A/2 = sqrt((b+c)/(2c))`, then `c^(2)=`

A

`a^2+b^2=c^2`

B

`b^2+c^2=a^2`

C

`c^2+a^2=b^2`

D

none

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (3)(TRUE AND FALSE)|3 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS)|2 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|3 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

If Delta ABC,quad if (cos A)/(2)=sqrt((b+c)/(2c)), then

If cos(A)/(2)=sqrt((b+c)/(2c)), then prove that a^(2)+b^(2)=c^(2)

Knowledge Check

  • In an acute angled triangle which one of the following is true : (i) (a sec A + b sec B + c sec C)/(tan A. tan B. tan C) = 2R (ii) (cos A)/(sqrt(4 R^(2) - a^(2))) = (cos B)/(sqrt(4R^(2) - b^(2))) = (cos C)/(sqrt(4R^(2) - c^(2))) (iii) b^(2) = a^(2) cos^(2) C + c^(2) cos^(2) A + 2a c cos A. cos C (iv) r cot.(A)/(2) + a = r cot.(B)/(2) + b = r cot.(C )/(2) + c

    A
    (i), (ii)
    B
    (ii), (iii)
    C
    (i), (ii), (iii)
    D
    (i), (ii), (iii), (iv)
  • If : a * cos A-b * sin A=c, "then" : a * sin A +b* cos A= A) sqrt(a^(2)+b^(2)-c^(2)) B) sqrt(a^(2)-b^(2)+c^(2)) C) sqrt(b^(2)+c^(2)-a^(2)) D) sqrt(b^(2)+c^(2)+a^(2))

    A
    `sqrt(a^(2)+b^(2)-c^(2))`
    B
    `sqrt(a^(2)-b^(2)+c^(2))`
    C
    `sqrt(b^(2)+c^(2)-a^(2))`
    D
    `sqrt(b^(2)+c^(2)+a^(2))`
  • Similar Questions

    Explore conceptually related problems

    For any triangle ABC, If B=3C, show that cos C=sqrt((b+c)/(4c)) and (sin A)/(2)=(b-c)/(2c)

    If a cos theta - b sin theta = c, prove that a sin theta + b cos theta = pm sqrt(a^(2) + b^(2) - c^(2)) .

    If a cos theta - b sin theta =c , then prove that a sin theta + b cos theta = +- sqrt(a^(2) + b^(2) - c^(2))

    In a Delta ABC, c cos ^(2)""(A)/(2) + a cos ^(2) ""(C ) /(2)=(3b)/(2), then a,b,c are in

    Show that for all real theta , the expression a sin^(2)theta + b sin theta cos theta +c cos^(2)theta lies between 1/2(a+c) - 1/2 sqrt(b^(2) +(a-c)^(2)) and 1/2(a+c) + 1/2 sqrt(b^(2) +(a-c)^(2))

    Distance of the points (a,b,c) for the y axis is (a) sqrt(b^(2)+c^(2)) (b) sqrt(c^(2)+a^(2)) (c )sqrt(a^(2)+b^(2)) (d) sqrt(a^(2)+b^(2)+c^(2))