Home
Class 12
MATHS
if f(x) = cos x cos 2x cos 4x cos ...

if f(x) = cos x cos 2x cos 4x cos 8 x cos 16 x , then ` f' (pi //4)` is

A

`1`

B

` sqrt(2)`

C

`1 // sqrt(2)`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(\frac{\pi}{4}) \) for the function \[ f(x) = \cos x \cos 2x \cos 4x \cos 8x \cos 16x, \] we will use the product rule and some trigonometric identities to simplify our calculations. ### Step 1: Rewrite the function We can rewrite the function using the identity \( \cos A \cos B = \frac{1}{2} (\cos(A+B) + \cos(A-B)) \). However, for simplicity, we will use a different approach by multiplying and dividing by \( 2\sin x \). \[ f(x) = \cos x \cos 2x \cos 4x \cos 8x \cos 16x \cdot \frac{2\sin x}{2\sin x} = \frac{2\sin x \cos x \cos 2x \cos 4x \cos 8x \cos 16x}{2\sin x}. \] ### Step 2: Apply the double angle formula Using the double angle formula, we can simplify the numerator step by step: 1. \( 2\sin x \cos x = \sin 2x \) 2. \( 2\sin 2x \cos 2x = \sin 4x \) 3. \( 2\sin 4x \cos 4x = \sin 8x \) 4. \( 2\sin 8x \cos 8x = \sin 16x \) Continuing this process, we find that: \[ f(x) = \frac{\sin 32x}{2^5 \sin x}. \] ### Step 3: Differentiate \( f(x) \) Now we differentiate \( f(x) \) using the quotient rule: \[ f'(x) = \frac{(2^5 \sin x)(\frac{d}{dx}(\sin 32x)) - (\sin 32x)(\frac{d}{dx}(2^5 \sin x))}{(2^5 \sin x)^2}. \] Calculating the derivatives: - The derivative of \( \sin 32x \) is \( 32 \cos 32x \). - The derivative of \( \sin x \) is \( \cos x \). Substituting these into our expression gives: \[ f'(x) = \frac{(2^5 \sin x)(32 \cos 32x) - (\sin 32x)(2^5 \cos x)}{(2^5 \sin x)^2}. \] ### Step 4: Evaluate at \( x = \frac{\pi}{4} \) Now we substitute \( x = \frac{\pi}{4} \): 1. Calculate \( \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}} \). 2. Calculate \( \sin 32 \cdot \frac{\pi}{4} = \sin 8\pi = 0 \). 3. Calculate \( \cos 32 \cdot \frac{\pi}{4} = \cos 8\pi = 1 \). Substituting these values into our derivative: \[ f'(\frac{\pi}{4}) = \frac{(2^5 \cdot \frac{1}{\sqrt{2}})(32 \cdot 1) - (0)(2^5 \cdot \cos \frac{\pi}{4})}{(2^5 \cdot \frac{1}{\sqrt{2}})^2}. \] This simplifies to: \[ f'(\frac{\pi}{4}) = \frac{(32 \cdot 32)}{(2^5 \cdot \frac{1}{\sqrt{2}})^2} = \frac{1024}{32} = 32. \] ### Final Result Thus, the value of \( f'(\frac{\pi}{4}) \) is \[ \boxed{32}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(2)|64 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

cos ec2x + cos ec4x + cos ec8x + cos ec16x

If f(x)=cos x cos2x cos4x cos8x cos16x then

Knowledge Check

  • cos 10x + cos 8x + 3 cos 4x + 3 cos 2x=

    A
    `8 cos x cos 3x`
    B
    `8 cos ^(3) x+ cos 3x`
    C
    `8 cos^(3) x cos ^(3) x`
    D
    `8 cos x cos ^(3) 3x`
  • if f(x) = | cos x| then f' ((3pi )/(4)) is

    A
    `-(1)/( sqrt(2))`
    B
    `(1)/( sqrt(2))`
    C
    1
    D
    None
  • If f (x) = cos^2 x + cos^2 (pi/3 +x)+ cos x cos (pi/3 + x) then f (x) is :

    A
    odd
    B
    even
    C
    periodic
    D
    `f(0) = f(1)`
  • Similar Questions

    Explore conceptually related problems

    cos x cos 2x cos 4x cos 8x =(sin 16x)/(16sin x)

    If f(x)=cos x cos2x cos4x cos8x cos16x then f'((pi)/(4)) equals

    If f(x)=cos x cos2x cos4x cos(8x)*cos16x then find f'((pi)/(4))

    If f(x)=cos x*cos2x*cos4x*cos8x.cos16x, then f'((pi)/(4)) is :

    Evaluate int sin x cos x cos2x cos 4x cos 8x dx