Home
Class 12
MATHS
If x= a ( t + sin t ) , y= a (1- cos ...

If `x= a ( t + sin t ) , y= a (1- cos t) ` then dy / dx =

A

`"tan"(t)/(2)`

B

` cot (t)/(2)`

C

`sec (t)/(2)`

D

`"cosec"(t)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \frac{dy}{dx} \) for the parametric equations given by \( x = a(t + \sin t) \) and \( y = a(1 - \cos t) \), we will follow these steps: ### Step 1: Differentiate \( y \) with respect to \( t \) Given: \[ y = a(1 - \cos t) \] Differentiating \( y \) with respect to \( t \): \[ \frac{dy}{dt} = a \cdot \frac{d}{dt}(1 - \cos t) = a \cdot (0 + \sin t) = a \sin t \] ### Step 2: Differentiate \( x \) with respect to \( t \) Given: \[ x = a(t + \sin t) \] Differentiating \( x \) with respect to \( t \): \[ \frac{dx}{dt} = a \cdot \frac{d}{dt}(t + \sin t) = a \cdot (1 + \cos t) \] ### Step 3: Find \( \frac{dy}{dx} \) Using the chain rule for parametric equations: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the values from Steps 1 and 2: \[ \frac{dy}{dx} = \frac{a \sin t}{a(1 + \cos t)} \] ### Step 4: Simplify the expression The \( a \) in the numerator and denominator cancels out: \[ \frac{dy}{dx} = \frac{\sin t}{1 + \cos t} \] ### Step 5: Further simplification using trigonometric identities Using the identity \( 1 + \cos t = 2 \cos^2\left(\frac{t}{2}\right) \) and \( \sin t = 2 \sin\left(\frac{t}{2}\right) \cos\left(\frac{t}{2}\right) \): \[ \frac{dy}{dx} = \frac{2 \sin\left(\frac{t}{2}\right) \cos\left(\frac{t}{2}\right)}{2 \cos^2\left(\frac{t}{2}\right)} = \frac{\sin\left(\frac{t}{2}\right)}{\cos\left(\frac{t}{2}\right)} = \tan\left(\frac{t}{2}\right) \] ### Final Result: \[ \frac{dy}{dx} = \tan\left(\frac{t}{2}\right) \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |22 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

x = a (cos t + sin t), y = a (sin t-cos t)

If x=a (t+sin t) and y=a(1-cos t ) then find dy/dx .

Knowledge Check

  • If x=a ( tcos t- sin t ) ,y =a ( tsin t +cos t ),then (dy)/(dx) =

    A
    ` -tant `
    B
    ` tant `
    C
    `-cott`
    D
    `cott`
  • If x=e^(sin 3t) y= e ^(cos , 3t) ,then (dy)/(dx)=

    A
    ` (ylog x)/( xlogy ) `
    B
    ` (-ylogx )/( xlogy) `
    C
    ` (xlogy )/( ylogx )`
    D
    ` (-xlogy )/( ylogx) `
  • Similar Questions

    Explore conceptually related problems

    If x = a (cos t + t sin t), y = a (sin t - t cos t), then at t = pi//4,(dy)/(dx)

    If x=a(t-sin t) and y=a(1+cos t) then (dy)/(dx)=

    If x=a(t+sin t),y=a(1+cos t), then find (dy/dx)

    7. x=a(cos t+t sin t),y=a(sin t-t cos t) find dy/dx

    If y=a sin t, x=a cos t then find (dy)/(dx) .

    If x=a(cos t+t sin t) and y=a(sin t-t cos t), then find (d^(2)y)/(dx^(2))