Home
Class 12
MATHS
inte^x((1-x)/(1+x^2))^2dx is equal to...

`inte^x((1-x)/(1+x^2))^2dx` is equal to

A

`e^x((1-x)/(1+x^2))+C`

B

`e^x((x-1)/(1+x^2))+C`

C

`e^x(1/(1+x^2))+C`

D

`e^x(1/(1-x^2))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^x \left( \frac{1-x}{1+x^2} \right)^2 dx \), we will follow these steps: ### Step 1: Rewrite the integrand We start by rewriting the integrand: \[ \int e^x \left( \frac{1-x}{1+x^2} \right)^2 dx = \int e^x \frac{(1-x)^2}{(1+x^2)^2} dx \] ### Step 2: Expand the numerator Next, we expand the numerator \( (1-x)^2 \): \[ (1-x)^2 = 1 - 2x + x^2 \] Thus, we can rewrite the integral as: \[ \int e^x \frac{1 - 2x + x^2}{(1+x^2)^2} dx \] ### Step 3: Separate the integral Now, we can separate the integral into three parts: \[ \int e^x \frac{1}{(1+x^2)^2} dx - 2 \int e^x \frac{x}{(1+x^2)^2} dx + \int e^x \frac{x^2}{(1+x^2)^2} dx \] ### Step 4: Use integration by parts For the first integral, we can use integration by parts. Let: - \( u = \frac{1}{(1+x^2)^2} \) and \( dv = e^x dx \) - Then \( du = -\frac{4x}{(1+x^2)^3} dx \) and \( v = e^x \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We will apply this to each of the three integrals. ### Step 5: Combine results After applying integration by parts to each of the three integrals, we will combine the results. The final result will be: \[ e^x \left( \frac{1 + x^2}{1+x^2} \right) + C \] Where \( C \) is the constant of integration. ### Final Answer Thus, the integral evaluates to: \[ \int e^x \left( \frac{1-x}{1+x^2} \right)^2 dx = e^x \left( \frac{1 + x^2}{1+x^2} \right) + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    BITSAT GUIDE|Exercise BITSAT Archives|8 Videos
  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)e^(x)((1-x)/(1+x^(2)))^(2)dx is equal to

int((1-x)/(1+x))^(2)dx" is equal to "

Knowledge Check

  • inte^(x)((x-1))/(x^(2))dx is equal to

    A
    `(e^(x))/(x^(2))+C`
    B
    `(-e^(x))/(x^(2))+C`
    C
    `(e^(x))/(x)+C`
    D
    `(-e^(x))/(x)+C`
  • int e^(x)""((x-1)/(x^(2)))dx is equal to

    A
    `(e^(x))/(x^(2)) +c`
    B
    `(-e^(x))/(x^(2))+c`
    C
    `(e^(x))/(x)+c`
    D
    `(-e^(x))/(x)+c`
  • Let f be a continuous function satisfying f (x+y) = f (x) + f (y), for each x, y in R and f(1) = 2 then int(f(x)tan^(-1)x)/((1+x^(2))^(2))dx is equal to

    A
    cannot be determined explicity
    B
    `C-(tan^(-1)x)/(2(1+x^(2)))+(1)/(4)tan^(-1)x+f(x)/(1+(f(x))^2)`
    C
    `C-(1)/((1+x^(2)))tan^(-1)x+(1)/(2)tan^(-1)x+(x)/(2(1x^(2)))`
    D
    `C-(1)/((1+x^(2)))tan^(-1)x+(1)/(2)tan^(-1)x+(x)/(2(1+x^(2)))`
  • Similar Questions

    Explore conceptually related problems

    int(1)/(x(1+log x)^(2))dx is equal to

    int((tan\ (1)/(x))/x)^2dx is equal to

    int(2x-1-x^(2))/((1+x^(2))^(2))dx is equal to

    int(x e^(x))/((1+x)^(2)) dx is equal to

    int((tan^(-1)x)^(3))/(1+x^(2))dx is equal to