Home
Class 12
MATHS
If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)...

If `(e^(x))/(1-x) = B_(0) +B_(1)x+B_(2)x^(2)+...+B_(n)x^(n)+... `, then the value of `B_(n) - B_(n-1)` is

A

1

B

1/n

C

`(1)/(n!)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    BITSAT GUIDE|Exercise BITSAT Archives|8 Videos
  • DIFFERENTIAL EQUATIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|17 Videos
  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=a_(0)+a_(1)x+a_(2)x^(2)++a_(n)x^(n)+ and (f(x))/(1-x)=b_(0)+b_(1)x+b_(2)x^(2)++b_(n)x^(n)+ then b_(n)+b_(n-1)=a_(n) b.b_(n)-b_(n-1)=a_(n)cb_(n)/b_(n-1)=a_(n) d.none of these

If the expansion in powers of x of the function 1/[(1-ax)(1-bx)] is a a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+..., then a_(n) is (b^(n)-a^(n))/(b-a) b.(a^(n)-b^(n))/(b-a) c.(b^(n+1)-a^(n+1))/(b-a) d.(a^(n+1)-b^(n+1))/(b-a)

Knowledge Check

  • If (e^(x))/(1-x) = B_(0) + B_(1)x + B_(2)x^(2) + ...+B_(n)x^(n) +... then B_(n)-B_(n-1) equals

    A
    `(1)/(n!)`
    B
    `(1)/((n-1)!)`
    C
    `(1)/(n!) (1)/((n-1)!)`
    D
    1
  • If e^x/(1-x) =B_0 + B_1x + B_2 x^2 + cdotcdotcdot + B_n x^n +cdotcdotcdot, then B_n-B_(n-1) equals

    A
    `1/(n!)`
    B
    `1/((n-1)!`
    C
    `1/(n!)-1/((n-1)!`
    D
    1
  • If x^(n) = a_(0) + a_(1) (1 + x) + a_(2)(1 + x)^(2) + .. .+ a_(n) (1 +x)^(n) = b_(0) + b_(1) (1 - x) + b_(2) (1 - x)^(2) + ... + b_(n)(1 - x)^(n) then for n = 201, (a_(101) , b_(101) ) is equal to:

    A
    `(-""^(201)C_(101),-""^(201)C_(101))`
    B
    `(""^(201)C_(101),-""^(201)C_(101))`
    C
    `(-""^(201)C_(101),""^(201)C_(101))`
    D
    `(""^(201)C_(101),""^(201)C_(101))`
  • Similar Questions

    Explore conceptually related problems

    Let f(x) = a_(0) + a_(1)x + a_(2)x^(2) + …+ a_(2n) x^(2n) and g(x) = b_(0) + b_(1) x + b_(2)x^(2) + …+ b_(n-1) x^(x-1) + x^(n) + x^(n+1) + …+ x^(2n) . If f(x) = =g (x + 1) , find a_(n) in terms of n.

    If A=int_0^1 x^50(2-x)^50dx, B=int_0^1 x^50(1-x)^50dx and A/B=2^n , then the value of n is …

    If f(x)=(a_(1)x+b_(1))^(2)+(a_(2)x+b_(2))^(2)+...+(a_(n)x+b_(n))^(2), then prove that (a_(1)b_(1)+a_(2)b_(2)+...+a_(n)b_(n))^(2)<=(a_(1)^(2)+a_(2)^(2)+...+a_(n)^(2))(b_(1)^(2)+b_(2)^(2)+...+b_(n)^(2))

    " If "_(" X ")" is "B(x,n,(1)/(3)),P(x>=1)>0.8" ,the least value of "n

    If a=sum_(n=0)^(oo)(x^(3n))/((3n)!),b=sum_(n=1)^(oo)(x^(3n-2))/((3n-2)!)" and "c=sum_(n-1)^(oo)(x^(3n-1))/((3n-1)!) , the the value of a^(3)+b^(3)+c^(3)abc is