Home
Class 12
MATHS
If intf(x)cosxdx=1/2f^2(x)+C," then "f(x...

If `intf(x)cosxdx=1/2f^2(x)+C," then "f(x)` can be

A

x

B

1

C

cosx

D

sinx

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we start with the equation provided: \[ \int f(x) \cos x \, dx = \frac{1}{2} f^2(x) + C \] ### Step 1: Differentiate both sides To eliminate the integral, we differentiate both sides with respect to \(x\). \[ \frac{d}{dx} \left( \int f(x) \cos x \, dx \right) = \frac{d}{dx} \left( \frac{1}{2} f^2(x) + C \right) \] Using the Fundamental Theorem of Calculus on the left side, we have: \[ f(x) \cos x \] For the right side, we use the chain rule: \[ \frac{d}{dx} \left( \frac{1}{2} f^2(x) \right) = f(x) f'(x) \] Thus, we have: \[ f(x) \cos x = f(x) f'(x) \] ### Step 2: Simplify the equation Assuming \(f(x) \neq 0\), we can divide both sides by \(f(x)\): \[ \cos x = f'(x) \] ### Step 3: Integrate to find \(f(x)\) Now we need to find \(f(x)\) by integrating \(f'(x)\): \[ f(x) = \int \cos x \, dx \] The integral of \(\cos x\) is: \[ f(x) = \sin x + C_1 \] where \(C_1\) is a constant of integration. ### Conclusion Thus, the function \(f(x)\) can be expressed as: \[ f(x) = \sin x + C_1 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    BITSAT GUIDE|Exercise BITSAT Archives|8 Videos
  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos

Similar Questions

Explore conceptually related problems

If int f(x)cos xdx=(1)/(2)f^(2)(x)+C" ,then "f(x)" can be "P sin x .Find the value of "P

If intf(x)*cosxdx=1/2{f(x)}^2+c , then f(0)= (A) 1 (B) 0 (C) -1 (D) none of these

Knowledge Check

  • If intf(x)cos x dx = 1/2 f^(2)(x)+C , then f(x) can be

    A
    x
    B
    1
    C
    cos x
    D
    sin x
  • If int f(x) cos x dx =(1)/(2) f^(2)(x) +C then f(x) can be

    A
    x
    B
    1
    C
    `cos x`
    D
    `sin x`
  • If intf(x)cosxdx=1/2[f(x)]^(2)+c," then " f(pi/2) is

    A
    c
    B
    `pi/2+c`
    C
    `c+1`
    D
    `2pi+c`
  • Similar Questions

    Explore conceptually related problems

    If intf(x)dx=2[f(x)]^(3)+c , then f(x) can be

    If intf(x)dx=2 {f(x)}^(3)+C , then f (x) is

    If intf(x)dx=f(x)+c," then " f(x)=

    If intf(x)/(logcosx)dx=-log(logcosx)+c , then f(x) is equal to

    If intf(x)dx=f(x) , then int{f(x)}^2 dx is equal to