Home
Class 11
MATHS
Evaluate the limits, if exist lim(x rarr...

Evaluate the limits, if exist `lim_(x rarr 0)(x(e^x-1))/(1-cosx)`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{x(e^x - 1)}{1 - \cos x}, \] we will follow these steps: ### Step 1: Identify the form of the limit As \( x \to 0 \), both the numerator and denominator approach 0. Therefore, we have a \( \frac{0}{0} \) indeterminate form. ### Step 2: Rewrite the limit We can rewrite the limit as: \[ \lim_{x \to 0} \frac{x(e^x - 1)}{1 - \cos x} = \lim_{x \to 0} \frac{x(e^x - 1)}{x^2} \cdot \frac{x^2}{1 - \cos x}. \] ### Step 3: Simplify the limit We can separate this into two limits: \[ \lim_{x \to 0} \frac{e^x - 1}{x} \cdot \lim_{x \to 0} \frac{x^2}{1 - \cos x}. \] ### Step 4: Evaluate the first limit The first limit can be evaluated using the known limit: \[ \lim_{x \to 0} \frac{e^x - 1}{x} = 1. \] ### Step 5: Evaluate the second limit For the second limit, we can use the half-angle formula for cosine: \[ 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right). \] Thus, we rewrite the limit: \[ \lim_{x \to 0} \frac{x^2}{1 - \cos x} = \lim_{x \to 0} \frac{x^2}{2 \sin^2\left(\frac{x}{2}\right)}. \] ### Step 6: Rewrite using sine limit Now, we can express this as: \[ \frac{1}{2} \lim_{x \to 0} \frac{x^2}{\sin^2\left(\frac{x}{2}\right)}. \] Using the fact that \[ \lim_{u \to 0} \frac{\sin u}{u} = 1, \] we have: \[ \lim_{x \to 0} \frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}} = 1 \implies \lim_{x \to 0} \frac{x^2}{\sin^2\left(\frac{x}{2}\right)} = \lim_{x \to 0} \left(\frac{x}{\frac{x}{2}}\right)^2 = 4. \] ### Step 7: Combine the results Now we can combine the results of both limits: \[ \lim_{x \to 0} \frac{x(e^x - 1)}{1 - \cos x} = 1 \cdot \frac{1}{2} \cdot 4 = 2. \] ### Final Answer Thus, the limit is \[ \boxed{2}. \]

To evaluate the limit \[ \lim_{x \to 0} \frac{x(e^x - 1)}{1 - \cos x}, \] we will follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT|Exercise EXERCISE 13.2|11 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT|Exercise EXERCISE 12.1|4 Videos
  • LINEAR INEQUALITIES

    NCERT|Exercise EXERCISE 6.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the limits,if exist lim_(x rarr0)(e^(4x)-1)/(x)

Evaluate the limits,if exist lim_(x rarr0)(e^(2+x)-e^(2))/(x)

Evaluate the limits,if exist quad lim_(x rarr0)(e^(sin x)-1)/(x)

Evaluate the limits,if exist lim_(x rarr0)(log_(e)(1+2x))/(x)

lim_(x rarr0)((e^(x)-x-1)/(x))

Evaluate the limits,if exist (lim)_(x rarr0)(log(1+x^(3)))/(sin^(3)x)

Evaluate the following limit: (lim)_(x rarr0)(x(2^(x)-1))/(1-cos x)

Evaluate the limit,if exists : lim_(x rarr0)((a+x)^(2)sin(a+x)-a^(2)sin a)/(x)

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(sin x)-1)/(x)