Home
Class 12
MATHS
The value of sum(k=1)^(13) (1)/(sin((pi)...

The value of `sum_(k=1)^(13) (1)/(sin((pi)/(4) + ((k-1)pi)/(6)) sin ((pi)/(4)+ (kpi)/(6)))` is equal to

A

` 3-sqrt3`

B

`2(3-sqrt3)`

C

`2(sqrt3-1)`

D

`2(2+sqrt3)`

Text Solution

Verified by Experts

The correct Answer is:
C

`2 overset(13) underset(k=1) (sum) (sin((pi)/(6)))/(sin ((pi/(4) + ((k-1)pi)/(6)) sin ((pi)/(4) +(kpi)/(6))))`
`" " = 2 sum (sin{((pi)/(4) + (kpi)/(6))- ((pi)/(4) + ((k-1)pi)/(6))})/(sin ((pi)/(4) + ((k-1)pi)/(6))* sin ((pi)/(4)+ (kpi)/(6)))`
`" " = 2 overset(13)underset(k=1) (sum)(cot((pi)/(4)+ ((k-1)pi)/(6)) - cot ((pi)/(4)+ (k pi)/(6)))`
`= 2[ cot ((pi)/(4)) - cot ((pi)/(4) + (13pi)/(6))]`
`= 2[1-(2-sqrt3)]`
`= 2 (sqrt3-1)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise JEE Main Previous Year|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(k=1)^(13) (1)/(sin((pi)/(4)+((k-1)pi)/(6))sin((pi)/(4)+(kpi)/(6))) is equals to :

The value of underset(k=1) overset(13)Sigma(1)/(sin ((pi)/(4)+(k-1)pi)/(6)sin((pi)/(4)+(kpi)/(6)) is equal to

The value of sum_(k=1)^(13)tan((k pi)/(12))tan(((k-1)pi)/(12)) is

The value of sum_(k=1)^(10)((sin(2 pi k))/(11)-i(cos(2 pi k))/(11)) is

sin((pi)/(6)+cos^(-1)((1)/(4)) )

The value of sin^(6)((pi)/(49))+cos^(6)((pi)/(49))-1+3sin^(2)((pi)/(49))cos^(2)((pi)/(49)) is equal to