Home
Class 12
MATHS
Prove that [(a^(2) + b^(2))/(a + b)]^(...

Prove that
`[(a^(2) + b^(2))/(a + b)]^(a + b) gt a^(a) b^(b) gt {(a + b)/(2)}^(a + b)`, where a,b `gt` 0

Text Solution

Verified by Experts

`([a+a+...a "times"]+[b+b+....b" times"])/(a+b)ge [a^ab^b]^((1)/(a+b))`
`ge (a+b)/(((1)/(a)+(1)/(a)+....a " times")+((1)/(b)+(1)/(b)+.....b" times"))`
or ` (a^2+b^2)/(a+b)ge[a^ab^b]^((1)/(a+b))ge (a+b)/(1+1)`
or ` ((a^2+b^2)/(a+b))^(a+b) ge a^a b^b ge ((a+b)/(2))^(a+b)`
or ` [(a^2+b^2)/(a+b)]^(a+b) gt a^a b^b gt {(a+b)/(2)}^(a+b)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise 6.4|4 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise (Single)|20 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise 6.2|6 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos

Similar Questions

Explore conceptually related problems

If a,b,c and d are any four consecutive coefficients in the expansion of (1 + x)^(n) , then prove that (i) (a) /(a+ b) + (c)/(b+c) = (2b)/(b+c) (ii) ((b)/(b+c))^(2) gt (ac)/((a + b)(c + d)), "if " x gt 0 .

Prove that b^2c^2+c^2a^2+a^2b^2gtabc(a+b+c) , where a,b,c gt 0 .

Knowledge Check

  • What is agr (bi) where b gt0 ?

    A
    0
    B
    `(pi)/(2)`
    C
    `pi`
    D
    `(3pi)/(2)`
  • Suppose A, B, C are defined as A = a^(2)b + ab^(2) - a^(2)c - ac^(2), B = b^(2)c + bc^(2) - a^(2)b - ab^(2) , and C = a^(2)c + ac^(2) - b^(2)c - bc^(2) , where a gt b gt c gt 0 and the equation Ax^(2) + Bx + C = 0 has equal roots, then a, b, c are in

    A
    A.P.
    B
    G.P.
    C
    H.P.
    D
    A.G.P.
  • Square root of 2a - sqrt(3a^2 - 2ab - b^2) , (a gt b gt 0) is

    A
    `1/(sqrt2) (sqrt(3a + b) + sqrt(a - b))`
    B
    `1/(sqrt(2)) (sqrt(3a - b) + sqrt(a + b))`
    C
    `1/(sqrt(2)) (sqrt(3a + b) - sqrt(a - b))`
    D
    `1/(sqrt2)(sqrt(3a - b) - sqrt(a + b))`
  • Similar Questions

    Explore conceptually related problems

    Prove that if a,b,c gt 0 then a^2(b+c)+b^2(c+a)+c^2(a+b) geq 6abc

    If a gt 0 and b^(2) - 4 ac = 0 then solve ax^(3) + (a + b) x^(2) + (b + c) x + c gt 0 .

    Prove that (b^2+c^2)/(b+c)+(c^2+a^2)/(c+a)+(a^2+b^2)/(a+b)gt a+b+c , where a,b,cgt 0 .

    If a^(2) + b^(2) = 135 and ab = 7, (a gt 0, b gt 0) then the value of (a^(3) - b^(3)) is :

    If a^(2) + b^(2) = 99 and ab = 11, (a gt 0, b gt 0) then the value of (a^(3) + b^(3)) is :