Home
Class 12
MATHS
If A=lim(x to 0) (sin^(-1)(sinx))/(cos^(...

If `A=lim_(x to 0) (sin^(-1)(sinx))/(cos^(-1)(cosx))and B=lim_(x to 0)([|x|])/(x),` then

A

A = 1

B

A does not exist

C

B = 0

D

B = 1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the limits \( A \) and \( B \) as defined in the question. Let's break it down step by step. ### Step 1: Calculate \( A \) We need to evaluate: \[ A = \lim_{x \to 0} \frac{\sin^{-1}(\sin x)}{\cos^{-1}(\cos x)} \] #### Step 1.1: Evaluate the left-hand limit (LHL) For \( x \to 0^- \): - When \( x < 0 \), \( \sin^{-1}(\sin x) = x \) (since \( \sin x \) is negative and \( \sin^{-1} \) will return the angle in the range \([- \frac{\pi}{2}, \frac{\pi}{2}]\)). - For \( \cos^{-1}(\cos x) \), since \( x < 0 \), \( \cos^{-1}(\cos x) = -x \). Thus, we have: \[ \text{LHL} = \lim_{x \to 0^-} \frac{x}{-x} = -1 \] #### Step 1.2: Evaluate the right-hand limit (RHL) For \( x \to 0^+ \): - When \( x > 0 \), \( \sin^{-1}(\sin x) = x \) (since \( \sin x \) is positive). - For \( \cos^{-1}(\cos x) \), since \( x > 0 \), \( \cos^{-1}(\cos x) = x \). Thus, we have: \[ \text{RHL} = \lim_{x \to 0^+} \frac{x}{x} = 1 \] #### Step 1.3: Compare LHL and RHL Since: \[ \text{LHL} = -1 \quad \text{and} \quad \text{RHL} = 1 \] The limits do not match, hence: \[ A \text{ does not exist.} \] ### Step 2: Calculate \( B \) We need to evaluate: \[ B = \lim_{x \to 0} \frac{|\lfloor x \rfloor|}{x} \] #### Step 2.1: Evaluate the left-hand limit (LHL) For \( x \to 0^- \): - When \( x < 0 \), \( \lfloor x \rfloor = -1 \) (the greatest integer less than \( x \)). - Hence, \( |\lfloor x \rfloor| = 1 \). Thus, we have: \[ \text{LHL} = \lim_{x \to 0^-} \frac{1}{x} \to -\infty \] #### Step 2.2: Evaluate the right-hand limit (RHL) For \( x \to 0^+ \): - When \( x > 0 \), \( \lfloor x \rfloor = 0 \). - Hence, \( |\lfloor x \rfloor| = 0 \). Thus, we have: \[ \text{RHL} = \lim_{x \to 0^+} \frac{0}{x} = 0 \] #### Step 2.3: Compare LHL and RHL Since: \[ \text{LHL} = -\infty \quad \text{and} \quad \text{RHL} = 0 \] The limits do not match, hence: \[ B \text{ does not exist.} \] ### Final Results - \( A \) does not exist. - \( B \) does not exist.

To solve the given problem, we need to find the limits \( A \) and \( B \) as defined in the question. Let's break it down step by step. ### Step 1: Calculate \( A \) We need to evaluate: \[ A = \lim_{x \to 0} \frac{\sin^{-1}(\sin x)}{\cos^{-1}(\cos x)} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise ComprehensionType|2 Videos
  • LIMITS

    CENGAGE|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE|Exercise Single Correct Answer Type|59 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 0) (sin(sinx))/x

If A=lim_(x->0)sin^(-1)(sinx)/(cos^(-1)(cosx)) and B=lim_(x->0)[|x|]/x then (where [.] denotes greatest integer function)(A) A=1 (B) A does not exist (C) B = 0 (D) B=1

lim_(x to 0) (x^3 sin(1/x))/sinx

lim_(x rarr0)sin^(-1)((sin x)/(x))

Evaluate lim_(x to 0) (sinx-2)/(cosx-1).

lim_(x to 0) (cos 2x-1)/(cos x-1)

lim_(x rarr0)(cos^(-1)(cos x))/(sin^(-1)(sin x)) is equal to :

lim_(x rarr0)(a^(sin x)-1)/(sin x)

lim_(x rarr 0) (2(1-cosx))/x^2

Lim_(x rarr0)(a^(sin x)-1)/(sin x)