Home
Class 12
MATHS
Let f(x) be the fourth degree polynomial...

Let f(x) be the fourth degree polynomial such that `f'(0)=-6,f(0)=2 and lim_(xrarr1) (f(x))/((x-1)^(2))=1`
The value of f(2) is

A

1

B

0

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
C

Since `underset(xrarr1)(lim)(f(x))/((x-1)^(2))=1,f(1)=0`
`therefore" "underset(xrarr1)(lim)(f(x))/((x-1)^(2))=underset(xrarr1)(lim)(f'(x))/(2(x-1))=1`
`rArr" "f'(1)=0`
`therefore" "underset(xrarr1)(lim)(f''(x))/(2)=1rArrf''(1)=2`
Since x = 1 is root of f(x) = 0 and `f'(x) = 0`
`f(x)=(x-1)^(2)(ax^(2)+bx+2)" "(because f(0)=2)`
`rArr" "f'(x)=2(x-1)(ax^(2)+bx+2)+(2ax+b)(x-1)^(2)`
`because" "f'(0)=-6rArr b=-2`
Using f''(1)= 2, we get `a+b=-1 rArr a=1`
`rArr" "f(x)=(x-1)^(2)(x^(2)-2x+2)`
`rArr" "f(x)=(x-1)^(4)+(x-1)^(2)`
`rArr" "f(2)=1+1=2`
`"Also, "f'(x)=4(x-1)^(3)+2(x-1)`
`rArr" "f'(2)=4+2=6`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Multiple Correct Answer Type|2 Videos
  • LIMITS

    CENGAGE|Exercise Comprehension Type|4 Videos
  • LIMITS

    CENGAGE|Exercise Multiple Correct Answers Type|4 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be the fourth degree polynomial such that f'(0)-6,f(0)=2 and lim_(x rarr1)(f(x))/((x-1)^(2))=1 The value of f(2) is 3 b.1 c.0 d.2

Let lim_(x rarr1)(x^(a)-ax+a-1)/((x-1)^(2))=f(a). Then the value of f(4) is

Knowledge Check

  • Let f(x) be twice differentiable function such that f'(0) =2 , then, lim_(xrarr0) (2f(x)-3f(2x)+f(4x))/(x^2) , is

    A
    6
    B
    3
    C
    12
    D
    none of these
  • If f'(2)=2, f''(2) =1 , then lim_(xrarr2)(2x^2-4f'(x))/(x-2) , is

    A
    4
    B
    0
    C
    2
    D
    `oo`
  • If f(x) is a polynomial of degree 2, such that f(0)=3,f'(0)=-7,f''(0)=8 int_(1)^(2)f(x)dx=

    A
    `11/6`
    B
    `13/6`
    C
    `17/6`
    D
    `19/6`
  • Similar Questions

    Explore conceptually related problems

    Let f(x) be a polynomial of degree 4 such that f(1)=1,f(2)=2,f(3)=3,f(4)=4 and lim_(x rarr oo)(xf(x))/(x^(5)+1)=1 then value of f(6) is

    If f'(x)=f(x) and f(0)=1 then lim_(x rarr0)(f(x)-1)/(x)=

    Let f(x) be a polynomial of degree 4 on R such that lim_(x rarr1)(f(x))/((x-1)^(2))=1 If f'(0)=-6 and f'(2)=6, then find global maximum value of f(x) in [(1)/(2),2]

    Let f(x) be a quadratic function such that f(0)=f(1)=0&f(2)=1, then lim_(x rarr0)(cos((pi)/(2)cos^(2)x))/(f^(2)(x)) equal to

    Let f(x) be a fourth degree polynomial with coefficient of x^(4) is 1 is such that f(-1)=1,f(2)=4.f(-3)=9,(4)=16 then find f(1) .