Home
Class 12
MATHS
int(e^(x)(x-1)(x-lnx))/(x^(2))dx is equa...

`int(e^(x)(x-1)(x-lnx))/(x^(2))dx` is equal to

A

`e^(x)((x-lnx)/(x))+c`

B

`e^(x)((x-lnx+1)/(x))+c`

C

`e^(x)((x-lnx)/(x^(2)))+c`

D

`e^(x)((x-lnx-1)/(x))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{e^x (x - 1)(x - \ln x)}{x^2} \, dx, \] we will follow these steps: ### Step 1: Simplify the integrand We can rewrite the integrand by separating the terms: \[ \frac{e^x (x - 1)(x - \ln x)}{x^2} = e^x \left( \frac{x - 1}{x^2} \right)(x - \ln x). \] This can be expressed as: \[ e^x \left( \frac{1}{x} - \frac{1}{x^2} \right)(x - \ln x). \] ### Step 2: Rewrite the expression Now, we can express the integral as: \[ \int e^x \left( \frac{x - 1}{x^2} \right)(x - \ln x) \, dx = \int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right)(x - \ln x) \, dx. \] ### Step 3: Use substitution Let us use the substitution: \[ t = \frac{e^x}{x}. \] Then, we need to find \( dt \): \[ dt = \left( \frac{e^x}{x} \right)' \, dx = \left( \frac{e^x \cdot x - e^x}{x^2} \right) dx = \frac{e^x (x - 1)}{x^2} \, dx. \] Thus, we can express \( dx \) in terms of \( dt \): \[ dx = \frac{x^2}{e^x (x - 1)} dt. \] ### Step 4: Substitute back into the integral Now substituting back into the integral gives: \[ \int \ln(t) \, dt, \] where \( t = \frac{e^x}{x} \). ### Step 5: Integrate The integral of \( \ln(t) \) is: \[ t \ln(t) - t + C. \] ### Step 6: Substitute back for \( t \) Now we substitute back for \( t \): \[ \frac{e^x}{x} \ln\left(\frac{e^x}{x}\right) - \frac{e^x}{x} + C. \] ### Step 7: Simplify the expression This simplifies to: \[ \frac{e^x}{x} \left( x - \ln(x) - 1 \right) + C. \] ### Final Result Thus, the final result for the integral is: \[ \int \frac{e^x (x - 1)(x - \ln x)}{x^2} \, dx = \frac{e^x}{x} \left( x - \ln(x) - 1 \right) + C. \]

To solve the integral \[ \int \frac{e^x (x - 1)(x - \ln x)}{x^2} \, dx, \] we will follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Comprehension Type|2 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|1 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(1)/(e^(x)+1)dx is equal to

int(1)/(e^(x)+1)dx is equal to

Knowledge Check

  • int e^(x)""((x-1)/(x^(2)))dx is equal to

    A
    `(e^(x))/(x^(2)) +c`
    B
    `(-e^(x))/(x^(2))+c`
    C
    `(e^(x))/(x)+c`
    D
    `(-e^(x))/(x)+c`
  • Read the following passages and answer the following questions (7-9) Consider the integrals of the form l=inte^(x)(f(x)+f'(x))dx By product rule considering e^(x)f(x) as first integral and e^(x)f'(x) as second one, we get l=e^(x)f(x)-int(f(x)+f'(x))dx=e^(x)f(x)+c int((1)/(lnx)-(1)/((lnx)^(2)))dx is equal to

    A
    `ln(lnx)+c`
    B
    `x+lnx+c`
    C
    `(x)/(lnx)+c`
    D
    none of these
  • int(lnx)^(-1)dx-int(lnx)^(-2) dx is equal to

    A
    `x(lnx)^(-1)+c`
    B
    `x(lnx)^(-2)+c`
    C
    `x(lnx)+c`
    D
    `x(lnx)^(2)+c`
  • Similar Questions

    Explore conceptually related problems

    int(1)/(e^(x)-1)dx is equal to

    int(1+x)/(x+e^(-x))dx is equal to

    int_(0)^(1)e^(x)((1-x)/(1+x^(2)))^(2)dx is equal to

    int1/(1+e^(x))dx is equal to

    int_(1)^(0)((tan^(-1)x)/x + (lnx)/(1+x^(2))) dx is equal to