Home
Class 12
MATHS
The integral int(sec^2x)/((secx+tanx)^(9...

The integral `int(sec^2x)/((secx+tanx)^(9/2))dx` equals (for some arbitrary constant `K)dot` `-1/((secx+tanx)^((11)/2)){1/(11)-1/7(secx+tanx)^2}+K` `1/((secx+tanx)^(1/(11))){1/(11)-1/7(secx+tanx)^2}+K` `-1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K` `1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K`

A

`-(1)/((secx+tanx)^(11//2)){(1)/(11)-(1)/(7)(secx+tanx)^(2)}+K`

B

`(1)/((secx+tanx)^(1//11)){(1)/(11)-(1)/(7)(secx+tanx)^(2)}+K`

C

`-(1)/((secx+tanx)^(11//2)){(1)/(11)+(1)/(7)(secx+tanx)^(2)}+K`

D

`(1)/((secx+tanx)^(11//2)){(1)/(11)+(1)/(7)(secx+tanx)^(2)}+K`

Text Solution

Verified by Experts

The correct Answer is:
C

`I=int(sec^(2)x)/((secx+tanx)^(9//2))dx`
Let ` sec x +tanx=t`
` or sec x -tan x=1//t`
Now, `(secx tanx+sec^(2)x)dx =dt`
`or secx(secx+tanx)dx=dt`
` or secx dx=(dt)/(t),(1)/(2)(t+(1)/(t))=sec x`
` :. I=(1)/(2)int ((t+(1)/(t)))/(t^(9//2))(dt)/(t)`
`=(1)/(2)int(t^(-9//2)+t^(-13//2))dt`
`=(1)/(2)[(t^(-9//2+1))/(-(9)/(2)+1)+(t^(-13//2+1))/(-(13)/(2)+1)]+K`
`=(1)/(2)[(t^(-7//2))/(-(7)/(2))+(t^(-11//2))/(-(11)/(2))]+K`
`= -(1)/(7) t^(-7//2)-(1)/(11)t^(-11//2)+K`
`= -(1)/(7) (1)/(t^(7//2))-(1)/(11)(1)/(t^(11//2))+K`
`= -(1)/(t^(11//2))((1)/(11)+(t^(2))/(7))+K`
`= -(1)/((secx+tan x)^(11//2)){(1)/(11)+(1)/(7)(sec x+tanx)^(2)}+K`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Single Correct Answer Type|48 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Subjective Type|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise JEE Main Previous Year|7 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

The integral int (sec^2x)/(secx+tanx)^(9/2)dx equals to (for some arbitrary constant K ) (A) -1/(secx+tanx)^(11/2){1/11-1/7(secx+tanx)^2}+K (B) 1/(secx+tanx)^(11/2){1/11-1/7(secx+tanx)^2}+K (C) -1/(secx+tanx)^(11/2){1/11+1/7(secx+tanx)^2}+K (D) 1/(secx+tanx)^(11/2){1/11+1/7(secx+tanx)^2}+K

int (sec^2x)/((tanx+1)(tanx+2)) dx

Knowledge Check

  • The integral int(sec^(2)x)/((secx+tanx)^(9//2))dx equals (for some arbitrary constant K)

    A
    `-(1)/((secx+tanx)^(11//2)){1/11-1/7(secx+tanx)^(2)}+K`
    B
    `(1)/((secx+tanx)^(11//2)){1/11-1/7(secx+tanx)^(2)}+K`
    C
    `-(1)/((secx+tanx)^(11//2)){1/11+1/7(secx+tanx)^(2)}+K`
    D
    `(1)/((secx+tanx)^(11//2)){1/11+1/7(secx+tanx)^(2)}+K`
  • int(secx+tanx)^(2)dx=

    A
    `x+secx+tanx`
    B
    `2(secx+tanx)-x`
    C
    `2(secx-tanx)+x`
    D
    `2(secx-tanx)+x`
  • int(secx)/(log(secx+tanx))dx=

    A
    `-log|secx+tanx|+c`
    B
    `log|secx+tanx|+c`
    C
    `-log|log(secx+tanx)|+c`
    D
    `log|log(secx+tanx)|+c`
  • Similar Questions

    Explore conceptually related problems

    int(tanx)/(secx+tanx)dx=

    int((secx)/(secx-tanx))dx equals

    (secx-1)(secx+1)

    tan^(-1)(secx+tanx)

    int(1)/(a secx+b tanx)dx=