Home
Class 12
MATHS
x(dy)/(dx)=y(logy-logx+1)...

`x(dy)/(dx)=y(logy-logx+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \( x \frac{dy}{dx} = y (\log y - \log x + 1) \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Rewrite the Equation**: Start with the given equation: \[ x \frac{dy}{dx} = y (\log y - \log x + 1) \] 2. **Separate Variables**: We can rearrange the equation to isolate \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{y}{x} (\log y - \log x + 1) \] This indicates that the equation is homogeneous since it can be expressed in terms of \(y/x\). 3. **Substitution**: Let \(y = vx\), where \(v\) is a function of \(x\). Then, differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = v + x \frac{dv}{dx} \] 4. **Substituting Back**: Substitute \(y = vx\) into the equation: \[ v + x \frac{dv}{dx} = \frac{vx}{x} (\log(vx) - \log x + 1) \] Simplifying gives: \[ v + x \frac{dv}{dx} = v (\log v + \log x - \log x + 1) = v (\log v + 1) \] 5. **Rearranging**: Rearranging the equation leads to: \[ x \frac{dv}{dx} = v (\log v + 1 - 1) = v \log v \] Thus, we have: \[ x \frac{dv}{dx} = v \log v \] 6. **Separating Variables Again**: Separate the variables: \[ \frac{dv}{v \log v} = \frac{dx}{x} \] 7. **Integrating Both Sides**: Integrate both sides: \[ \int \frac{dv}{v \log v} = \int \frac{dx}{x} \] For the left side, use the substitution \(t = \log v\), which gives \(dv = e^t dt\): \[ \int \frac{1}{t} dt = \log |t| + C = \log |\log v| + C \] The right side integrates to: \[ \log |x| + C \] 8. **Equating the Integrals**: Thus, we have: \[ \log |\log v| = \log |x| + C \] 9. **Exponentiating**: Exponentiate both sides to eliminate the logarithm: \[ |\log v| = e^{\log |x| + C} = |x| e^C \] Let \(k = e^C\), then: \[ \log v = kx \quad \text{or} \quad \log v = -kx \] 10. **Solving for \(v\)**: This gives: \[ v = e^{kx} \quad \text{or} \quad v = e^{-kx} \] 11. **Substituting Back for \(y\)**: Recall that \(v = \frac{y}{x}\), thus: \[ \frac{y}{x} = e^{kx} \implies y = x e^{kx} \] ### Final Solution: The solution to the differential equation is: \[ y = x e^{kx} \] where \(k\) is a constant.

To solve the differential equation \( x \frac{dy}{dx} = y (\log y - \log x + 1) \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Rewrite the Equation**: Start with the given equation: \[ x \frac{dy}{dx} = y (\log y - \log x + 1) ...
Promotional Banner

Topper's Solved these Questions

  • HOMOGENEOUS DIFFERENTIAL EQUATION

    RS AGGARWAL|Exercise Exercise 20|30 Videos
  • FUNDAMENTAL CONCEPTS OF 3-DIMENSIONAL GEOMETRY

    RS AGGARWAL|Exercise Exercise|18 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos

Similar Questions

Explore conceptually related problems

If x(dy)/(dx)=y(log y -logx+1), then the solution of the equation is

x(dy)/(dx)=y(logy-logx), where y=vx

Solve the differential equation x*(dy)/(dx)-y=logx .

If x^(y)=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2)).

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(logx)/((1+logx)^(2))

If ylog x=(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2))

Solve: xlogx(dy)/(dx)+y=2logx

Integrating factor of the differential equation (x.logx)(dy)/(dx)+y=2logx is

"If "y=a^(x^(a^(x...oo)))", prove that "(dy)/(dx)=(y^(2)(logy))/(x[1-y(logx)(logy)]).