Home
Class 12
MATHS
The matrix A={:[((1)/(sqrt(2)),(1)/(sqrt...

The matrix `A={:[((1)/(sqrt(2)),(1)/(sqrt(2))),((-1)/(sqrt(2)),(-1)/(sqrt(2)))]:}` is

A

Unitary

B

Orthogonal

C

Nilpotent

D

Involutary

Text Solution

AI Generated Solution

The correct Answer is:
To determine the properties of the matrix \( A = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \), we will check if it is orthogonal, nilpotent, or involutory. ### Step 1: Check if the matrix is Orthogonal A matrix \( A \) is orthogonal if \( A A^T = I \), where \( A^T \) is the transpose of \( A \) and \( I \) is the identity matrix. 1. **Find the transpose of \( A \)**: \[ A^T = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \] 2. **Multiply \( A \) by \( A^T \)**: \[ A A^T = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \] Performing the multiplication: \[ = \begin{pmatrix} \left(\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}\right) & \left(\frac{1}{\sqrt{2}} \cdot -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cdot -\frac{1}{\sqrt{2}}\right) \\ \left(-\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + -\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}\right) & \left(-\frac{1}{\sqrt{2}} \cdot -\frac{1}{\sqrt{2}} + -\frac{1}{\sqrt{2}} \cdot -\frac{1}{\sqrt{2}}\right) \end{pmatrix} \] \[ = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \] 3. **Check if \( A A^T = I \)**: The identity matrix \( I \) for a 2x2 matrix is \( \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \). Since \( A A^T \neq I \), the matrix is not orthogonal. ### Step 2: Check if the matrix is Nilpotent A matrix \( A \) is nilpotent if there exists some integer \( m \) such that \( A^m = 0 \). 1. **Calculate \( A^2 \)**: \[ A^2 = A \cdot A = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \] Performing the multiplication: \[ = \begin{pmatrix} \left(\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cdot -\frac{1}{\sqrt{2}}\right) & \left(\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cdot -\frac{1}{\sqrt{2}}\right) \\ \left(-\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + -\frac{1}{\sqrt{2}} \cdot -\frac{1}{\sqrt{2}}\right) & \left(-\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + -\frac{1}{\sqrt{2}} \cdot -\frac{1}{\sqrt{2}}\right) \end{pmatrix} \] \[ = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] 2. **Conclusion**: Since \( A^2 = 0 \), the matrix \( A \) is nilpotent. ### Step 3: Check if the matrix is Involutory A matrix \( A \) is involutory if \( A^2 = I \). 1. **Since we already calculated \( A^2 \)**: We found \( A^2 = 0 \), which is not equal to the identity matrix \( I \). ### Final Conclusion The matrix \( A \) is nilpotent.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    AAKASH INSTITUTE|Exercise Assignment (Section - I) Subjective Type Questions|3 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos

Similar Questions

Explore conceptually related problems

(1)/(sqrt(7)-sqrt(2))-(1)/(sqrt(7)+sqrt(2))=

x=(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+2)=

Knowledge Check

  • If U= [((1)/(sqrt2),(-1)/(sqrt2)),((1)/(sqrt2),(1)/(sqrt2))] , then U^(-1) is

    A
    `U^(T)`
    B
    U
    C
    I
    D
    0
  • The matrix A=[{:(1/sqrt2,1/sqrt2),((-1)/sqrt2,(-1)/sqrt2):}] is

    A
    2, 7
    B
    `-2, 7`
    C
    `2, -7`
    D
    `-2, -7`
  • The matrix A=[(1/sqrt2,1/sqrt2),(-1/sqrt2-1/sqrt2] is

    A
    unitary
    B
    orthogonal
    C
    nilpotent
    D
    involutory
  • Similar Questions

    Explore conceptually related problems

    (1)/(sqrt(2)+sqrt(3)-sqrt(5))+(1)/(sqrt(2)-sqrt(3)-sqrt(5))

    Simplify : (1)/(sqrt(3)+sqrt(2))-(1)/(sqrt(3)-sqrt(2))+(2)/(sqrt(2)+1)

    [" 64.Let "A=[[0,-sqrt((2)/(3)),(1)/(sqrt(3))],[(1)/(sqrt(2)),-(1)/(sqrt(6)),-(1)/(sqrt(3))],[(1)/(sqrt(2)),(1)/(sqrt(6)),(1)/(sqrt(3))]]" ,then which one of "],[" the following is correct? "],[" (1) "A" is an involutory matrix "],[" (2) "A" is an idempotent matrix "],[" (3) "A" is an orthogonal matrix "],[" (4) "A" is a singular matrix "]

    Simplify: (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(5))

    The matrix A=[(1/sqrt2,1/sqrt2),(-1/sqrt2,-1/sqrt2)] is