Home
Class 12
MATHS
We have f (x) lim(n to oo) cos (x)/(2)...

We have
`f (x) lim_(n to oo) cos (x)/(2) cos (x)/(2^(2)) cos (x)/(2^(3)) cos (x)/(2^(4))`……
….`cos (x)/(2^(n)) = ("sin" x)/(2^(n) "sin" (x)/(2^(n)))`
using the identity
`lim_(n to oo) lim_(x to 0)` f(x) equals

A

0

B

1

C

2

D

`(1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - E|4 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - F|3 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - C|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate :lim_(n rarr oo)(cos((x)/(2))cos((x)/(2^(2)))cos((x)/(2^(3)))......cos((x)/(2^(n))))

lim_ (n rarr oo) ((cos x) / (2) * (cos x) / (4) (cos x) / (2 ^ (n)))

Evaluate lim_(n rarr oo){cos((x)/(2))cos((x)/(4))cos((x)/(8))...cos((x)/(2^(n)))}

lim_ (n rarr oo) cos (x) / (2) * cos (x) / (4) * cos (x) / (8) ...... cos (x) / (2 ^ (n))

sin x = 2 ^ (n) * cos (x) / (2) * cos (x) / (2 ^ (2)) * cos (x) / (2 ^ (3)) * ... * cos ( x) / (2 ^ (n)) * sin (x) / (2 ^ (n))

Let f(x)=lim_(n rarr oo)(sin x)^(2n)

lim_ (x rarr oo) (cos x + sin x) / (x ^ (2))