Home
Class 12
MATHS
Sholve the simultasneous vector equation...

Sholve the simultasneous vector equations for `vecx aedn vecy: vecx+veccxxvecy=veca and vecy+veccxxvecx=vecb, vec!=0

Text Solution

Verified by Experts

The correct Answer is:
`vecx=(veca+vecbxxvec c+(vec c.veca)vec c)/(1+c^(2))`
`vecy=(vecb+vecaxxvec c+(vec c.vecb)vec c)/(1+c^(2))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE|Exercise SECTION-I (Subjective Type Questions)|5 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise Section - J (Akash Challengers Question)|15 Videos

Similar Questions

Explore conceptually related problems

Sholve the simultasneous vector equations for vecx and vecy: , vecx+veccxxvecy=veca and vecy+veccxxvecx=vecb, vec!=0

Solve the following simultaneous equation for vecx and vecy : vecx + vecy=veca, vecx xxvecy=vecb and vecx.veca=1

Knowledge Check

  • Let veca, vecb, vecc be 3 mutually perpendicular unit vectors. If an unknow vector vecx satisfies the equation veca xx ((vecx - vecb) xx veca) + vecb then vecx xx (( vecx - vecc ) xx vecb ) + vecc xx (( vecx - veca) xx vecc ) = vec0 is equal to

    A
    `veca + vecb + vecc`
    B
    `(veca + vecb + vecc)/(2)`
    C
    `(veca + vecb + vecc)/(3)`
    D
    `(veca + vecb + vecc)/(4)`
  • If the vector vecx satisfying vecx xx veca +(vecx .vecb) vecc=vecd be given by vecx=lambda veca+veca xx (veca xx (vecd xx vecc))/((veca.vecc)veca^2) , then theta is equal to

    A
    `(veca.vecc)/a^2`
    B
    `(veca.vecc)/b^2`
    C
    `(vecc.vecd)/c^2`
    D
    `(veca.vecx)/a^2`
  • If veca=veci+vecj+veck, veca.vecb=1 and vecaxxvecb=vecj-veck, then vecb equals

    A
    `hati`
    B
    `hati-hatj+hatk`
    C
    `2hatj-hatk`
    D
    `2hati`
  • Similar Questions

    Explore conceptually related problems

    Solve the following siultaneous equation for vectors vecx and vecy, if vecx+vecy=veca, vecx xxvecy=vecb, vecx.veca=1

    Let vecx, vecy and vecz be unit vectors such that vecx+vecy+vecz=veca, vecx xx(vecyxxvecz)=vecb, (vecx xxvecy)xxvecz=vecc, veca.vecx=3/2, veca.vecy=7/4 and \|veca|=2 . Find vecx,vecy,vecz in terms of veca,vecb,vecc.

    Let vecp,vecq,vecr be three mutually perpendicular unit vectors. If a vector vecx satisfies the equation vecp xx (( vecx-vecq)xxvecp)+ vecqxx((vecx-vecr)xx vecq)+ vecrxx((vecx-vecp)xxvecr)=vec0 then vecx . vecx is

    Prove that: veca.{(vecb+vecx)xx(veca+2vecb+3vecc)}=[vecavecbvecc].

    If veca and vecb are two vectors such that veca.vecb = 0 and veca xx vecb = vec0 , then