Home
Class 12
MATHS
The value of cos (270^(@) + theta) cos (...

The value of `cos (270^(@) + theta) cos ( 90^(@) -theta) -sin (270^(@) - theta) cos theta ` is

A

0

B

`-1`

C

`1//2`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos(270^\circ + \theta) \cos(90^\circ - \theta) - \sin(270^\circ - \theta) \cos \theta \), we will break it down step by step. ### Step 1: Evaluate \( \cos(270^\circ + \theta) \) Using the cosine addition formula and the properties of trigonometric functions: \[ \cos(270^\circ + \theta) = -\sin(\theta) \] This is because \( 270^\circ \) is in the third quadrant where cosine is negative, and it shifts the sine function. ### Step 2: Evaluate \( \cos(90^\circ - \theta) \) Using the co-function identity: \[ \cos(90^\circ - \theta) = \sin(\theta) \] ### Step 3: Substitute values into the expression Now substituting the values from Steps 1 and 2 into the original expression: \[ \cos(270^\circ + \theta) \cos(90^\circ - \theta) = (-\sin(\theta))(\sin(\theta)) = -\sin^2(\theta) \] ### Step 4: Evaluate \( \sin(270^\circ - \theta) \) Using the sine subtraction formula: \[ \sin(270^\circ - \theta) = -\cos(\theta) \] This is because \( 270^\circ \) is in the third quadrant where sine is negative. ### Step 5: Substitute \( \sin(270^\circ - \theta) \) into the expression Now substituting this value into the expression: \[ -\sin(270^\circ - \theta) \cos \theta = -(-\cos(\theta)) \cos \theta = \cos^2(\theta) \] ### Step 6: Combine the results Now we combine the results from Steps 3 and 5: \[ -\sin^2(\theta) + \cos^2(\theta) \] ### Step 7: Use the Pythagorean identity Using the Pythagorean identity \( \sin^2(\theta) + \cos^2(\theta) = 1 \): \[ -\sin^2(\theta) + \cos^2(\theta) = \cos^2(\theta) - \sin^2(\theta) \] This can be rewritten as: \[ \cos^2(\theta) - \sin^2(\theta) = 1 \] ### Final Result Thus, the value of the expression is: \[ \cos^2(\theta) - \sin^2(\theta) = 1 \] ### Conclusion The final answer is: \[ \boxed{1} \]

To solve the expression \( \cos(270^\circ + \theta) \cos(90^\circ - \theta) - \sin(270^\circ - \theta) \cos \theta \), we will break it down step by step. ### Step 1: Evaluate \( \cos(270^\circ + \theta) \) Using the cosine addition formula and the properties of trigonometric functions: \[ \cos(270^\circ + \theta) = -\sin(\theta) \] This is because \( 270^\circ \) is in the third quadrant where cosine is negative, and it shifts the sine function. ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|26 Videos
  • TRIGONOMETRIC FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|26 Videos
  • THREE DIMENSIONAL GEOMETRY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|20 Videos

Similar Questions

Explore conceptually related problems

sin theta cos(90^(@)-theta)+cos theta sin(90^(@)-theta)

sin theta cos(90^@ -theta) +cos theta sin(90^@ -theta) = ?

Knowledge Check

  • The value of cos theta+sin (270^(@)+theta)-sin(270^(@)-theta)+cos(180^(@)+theta) is

    A
    1
    B
    0
    C
    2
    D
    `-1`
  • The value of (sin(180^(@)+theta)cos(90^(@)+theta)tan(270^(@)-theta)cot(360^(@)-theta))/(sin(360^(@)-theta)cos(360^(@)+theta)cosec(-theta)sin(270^(@)+theta))

    A
    1
    B
    2
    C
    3
    D
    4
  • The value of (cos(90^(@)theta)sec(270^(@)+theta)sin(180^(@)+theta))/(cosec(-theta)cos(270^(@)-theta)tan(180^(@)+theta)) is

    A
    `cos theta`
    B
    `sin theta`
    C
    `tan theta`
    D
    `cot theta`
  • Similar Questions

    Explore conceptually related problems

    ((cos (90 ^ (@)) - theta) sin (90 ^ (@) - theta)) / (tan (90 ^ (@) - theta))

    Write the value of sintheta cos(90^(@)-theta)+costheta sin(90^(@)-theta).

    Prove that cos theta + "sin " (270^(@) +theta) - "sin "(270^(@) -theta) + "cos " (180^(@) +theta) =0

    The value of (sin theta ) /(cos (90^(@) -theta)) +(cos 43^(@))/(sin 47^(@)) is ………. .

    Evaluate : sin theta cos theta - (sin theta cos (90^(@) - theta) cos theta)/( sec (90^(@) - theta)) - (cos theta sin (90^(@) - theta) sin theta)/( cosec (90^(@) - theta))