Home
Class 12
MATHS
If sinA+sinB=C,cosA+cosB=D, then the va...

If `sinA+sinB=C,cosA+cosB=D`, then the value of `sin(A+B)`=

A

CD

B

`(CD)/(C^(2)+D^(2))`

C

`(C^(2)+D^(2))/(2CD)`

D

`(2CD)/(C^(2)+D^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where we need to find the value of \( \sin(A+B) \) given that \( \sin A + \sin B = C \) and \( \cos A + \cos B = D \), we can follow these steps: ### Step-by-Step Solution: 1. **Use the sum-to-product identities**: We know that: \[ \sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] and \[ \cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] 2. **Set up the equations**: From the given conditions, we can write: \[ 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) = C \] \[ 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) = D \] 3. **Divide the two equations**: Dividing the first equation by the second gives: \[ \frac{2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)}{2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)} = \frac{C}{D} \] This simplifies to: \[ \tan\left(\frac{A+B}{2}\right) = \frac{C}{D} \] 4. **Use the double angle identity for sine**: We know that: \[ \sin(A+B) = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A+B}{2}\right) \] We can express \( \sin\left(\frac{A+B}{2}\right) \) and \( \cos\left(\frac{A+B}{2}\right) \) in terms of \( \tan\left(\frac{A+B}{2}\right) \). 5. **Express sine and cosine in terms of \( C \) and \( D \)**: Let \( \tan\left(\frac{A+B}{2}\right) = \frac{C}{D} \). Then: \[ \sin\left(\frac{A+B}{2}\right) = \frac{C}{\sqrt{C^2 + D^2}}, \quad \cos\left(\frac{A+B}{2}\right) = \frac{D}{\sqrt{C^2 + D^2}} \] 6. **Substitute back into the sine formula**: Now substituting these into the sine double angle formula: \[ \sin(A+B) = 2 \cdot \frac{C}{\sqrt{C^2 + D^2}} \cdot \frac{D}{\sqrt{C^2 + D^2}} = \frac{2CD}{C^2 + D^2} \] ### Final Answer: Thus, the value of \( \sin(A+B) \) is: \[ \sin(A+B) = \frac{2CD}{C^2 + D^2} \]

To solve the problem where we need to find the value of \( \sin(A+B) \) given that \( \sin A + \sin B = C \) and \( \cos A + \cos B = D \), we can follow these steps: ### Step-by-Step Solution: 1. **Use the sum-to-product identities**: We know that: \[ \sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|20 Videos
  • TRIGONOMETRIC FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|26 Videos
  • VECTORS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise ( MHT CET Corner)|66 Videos

Similar Questions

Explore conceptually related problems

If sinA=cosA,then find the value of sin 2A.

If sinA+sinB=a and cosA+cosB=b then prove that sin(A+B)=(2ab)/(a^2+b^2) and cos(A+B)=(b^2-a^2)/(a^2+b^2)

Knowledge Check

  • If sinA+sinB=C,&cosA+cosB=D , then sin(A+B)=?

    A
    CD
    B
    `(CD)/(C^(2)+D^(2))`
    C
    `(C^(2)+D^(2))/(2CD)`
    D
    `(2CD)/(C^(2)+D^(2))`
  • If (sinA+cosA)/cosA=17/12 , then the value of (1-cosA)/sinA is :

    A
    `5/12`
    B
    `1/5`
    C
    `-5`
    D
    1
  • If sinA=sinB and cosA=cosB, A pi B , then

    A
    `"tan"(A-B)/(2)=0`
    B
    `cos(A+B)=1`
    C
    `"tan"(A+B)/(2)=0`
    D
    `sin(A-B)=1//2`
  • Similar Questions

    Explore conceptually related problems

    If sinA=sinB and cosA=cosB , then prove that sin. (A-B)/(2)=0 .

    If angles A and B satisfy sqrt(2)cosA = cosB + cos^(3)B and sqrt(2)sinA = sinB- sin^(3)B , then the value of 1620 sin^(2) (A-B) is ……………..

    If sinA+sinB=a and cosA+cosB=b,then cos(A+B)

    If sinA = sinB and cosA=cosB, then which one of the following is correct ?

    If sinA/sinB=sin(A-C)/sin(C-B) then