Home
Class 12
MATHS
If sinA+sinB=C,cosA+cosB=D, then the va...

If `sinA+sinB=C,cosA+cosB=D`, then the value of `sin(A+B)`=

A

CD

B

`(CD)/(C^(2)+D^(2))`

C

`(C^(2)+D^(2))/(2CD)`

D

`(2CD)/(C^(2)+D^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where we need to find the value of \( \sin(A+B) \) given that \( \sin A + \sin B = C \) and \( \cos A + \cos B = D \), we can follow these steps: ### Step-by-Step Solution: 1. **Use the sum-to-product identities**: We know that: \[ \sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] and \[ \cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] 2. **Set up the equations**: From the given conditions, we can write: \[ 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) = C \] \[ 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) = D \] 3. **Divide the two equations**: Dividing the first equation by the second gives: \[ \frac{2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)}{2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)} = \frac{C}{D} \] This simplifies to: \[ \tan\left(\frac{A+B}{2}\right) = \frac{C}{D} \] 4. **Use the double angle identity for sine**: We know that: \[ \sin(A+B) = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A+B}{2}\right) \] We can express \( \sin\left(\frac{A+B}{2}\right) \) and \( \cos\left(\frac{A+B}{2}\right) \) in terms of \( \tan\left(\frac{A+B}{2}\right) \). 5. **Express sine and cosine in terms of \( C \) and \( D \)**: Let \( \tan\left(\frac{A+B}{2}\right) = \frac{C}{D} \). Then: \[ \sin\left(\frac{A+B}{2}\right) = \frac{C}{\sqrt{C^2 + D^2}}, \quad \cos\left(\frac{A+B}{2}\right) = \frac{D}{\sqrt{C^2 + D^2}} \] 6. **Substitute back into the sine formula**: Now substituting these into the sine double angle formula: \[ \sin(A+B) = 2 \cdot \frac{C}{\sqrt{C^2 + D^2}} \cdot \frac{D}{\sqrt{C^2 + D^2}} = \frac{2CD}{C^2 + D^2} \] ### Final Answer: Thus, the value of \( \sin(A+B) \) is: \[ \sin(A+B) = \frac{2CD}{C^2 + D^2} \]

To solve the problem where we need to find the value of \( \sin(A+B) \) given that \( \sin A + \sin B = C \) and \( \cos A + \cos B = D \), we can follow these steps: ### Step-by-Step Solution: 1. **Use the sum-to-product identities**: We know that: \[ \sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|20 Videos
  • TRIGONOMETRIC FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|26 Videos
  • VECTORS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise ( MHT CET Corner)|66 Videos

Similar Questions

Explore conceptually related problems

If sinA+sinB=C,&cosA+cosB=D , then sin(A+B)=?

If sinA=cosA,then find the value of sin 2A.

If sinA+sinB=a and cosA+cosB=b then prove that sin(A+B)=(2ab)/(a^2+b^2) and cos(A+B)=(b^2-a^2)/(a^2+b^2)

If sinA=sinB and cosA=cosB , then prove that sin. (A-B)/(2)=0 .

If angles A and B satisfy sqrt(2)cosA = cosB + cos^(3)B and sqrt(2)sinA = sinB- sin^(3)B , then the value of 1620 sin^(2) (A-B) is ……………..

If sinA+sinB=a and cosA+cosB=b,then cos(A+B)

If sinA = sinB and cosA=cosB, then which one of the following is correct ?

If sinA/sinB=sin(A-C)/sin(C-B) then

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES-Exercise 2 (MISCELLANEOUS PROBLEMS)
  1. If sinA+sinB=C,cosA+cosB=D, then the value of sin(A+B)=

    Text Solution

    |

  2. If theta lies in the first quardrant and costheta=(8)/( 17 ), then fi...

    Text Solution

    |

  3. If tanx+tan((pi)/(3)-x)+tan((2pi)/(3)+x)=3, then

    Text Solution

    |

  4. If sin(theta+alpha)=a andsin(theta+beta)=b, then prove that cos(alpha...

    Text Solution

    |

  5. The expression cos^(2)(A-B)+cos^(2)B-2cos(A-B)cosAcosB is

    Text Solution

    |

  6. If tanalpha,tanbeta are the roots of the equation x^(2)+px+q=0(pne0), ...

    Text Solution

    |

  7. If cos(A-B)=3/5 and tanA .tan B=2, then

    Text Solution

    |

  8. tan100^0+tan125^0+tan100^0tan125^0 is equal to

    Text Solution

    |

  9. If pi/2 lt alpha lt pi, pi lt beta lt 3pi/2; sin alpha = 15/17 and tan...

    Text Solution

    |

  10. If sintheta=(12)/(13),(0ltthetalt(pi)/(2))and cosphi=-(3)/(5),(piltph...

    Text Solution

    |

  11. If tanA-tan B=x, and cot B-cotA=y, then find the value of cot(A-B).

    Text Solution

    |

  12. sin4theta can be written as

    Text Solution

    |

  13. If cos 2B =cos(A+C)/cos( A-C), then tanA, tanB, tanC are in

    Text Solution

    |

  14. If (2sinalpha)/({1+cosalpha+sinalpha})=y, then ({1-cosalpha+sinalph...

    Text Solution

    |

  15. (sintheta+sin2theta)/(1+costheta+cos2theta)=

    Text Solution

    |

  16. (sin3theta-cos3theta)/(sintheta+costheta)+1=

    Text Solution

    |

  17. If tanalpha=(1)/(7) and tanbeta=(1)/(3), then cos2alpha is equal to

    Text Solution

    |

  18. If tanbeta=costhetatanalpha, then "tan"^(2)(theta)/(2)=

    Text Solution

    |

  19. sec^2 A(1+sec2A) = 2sec2A

    Text Solution

    |

  20. 2sinAcos^3A-2sin^3AcosA=

    Text Solution

    |