Home
Class 12
MATHS
If a1, a2, a3,.....an are in H.P. and ...

If `a_1, a_2, a_3,.....a_n` are in H.P. and `a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n`, then k is equal to

A

`(bn-1)(a_(1)-a_(n))`

B

`na_(1)a_(n)`

C

`(n-1)a_(1)a_(n)`

D

`n(a_(1)-a_(n))`

Text Solution

Verified by Experts

The correct Answer is:
c

Since , `a_(1)a_(2),a_(3),…a_(n)` are in HP .
` :. 1/(a_(1)),1/(a_(2)),1/(a_(3)) , ..., 1/(a_(n))` are in AP.
Let d be common difference of AP. Then `1/(a_(2)) -1/(a_(1))=d`
` rArr a_(1) -a_(2) =a_(1) a_(2) d`
Similarly , `underset(" "a_(n-1)-a_(n)=a_(n-1)a_(n)d)(underset(.)underset(.)underset(.)(a_(2)-a_(3))=underset(.)underset(.)underset(.)(a_(2)a_(3)d))`
On adding all above equations , we get
`a_(1)-a_(n) = d(a_(1)a_(2)+a_(2)a_(3)+...+a_(n-1)a_(n))" "` ...(i)
Also, ` 1/(a^(n))=1/(a^(1))+(n-1)d rArr d = (a_(1)-a_(n))/(a_(1)a_(n)(n-1))`
On putting the value of d in Eq. (i) , we get
` a_(1) -a_(n) = (a_(1)-a_(n))/(a_(1)a_(n)(n-1)) (a_(1)a_(2)+a_(2)a_(3)+...+ a_(n-1)a_(n))`
` rArr a_(1)a_(2) +a_(2)a_(3)+...+ a_(n-1)a_(n) = a_(1)a_(n) (n-1)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 13|1 Videos
  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 14|1 Videos
  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 11|1 Videos
  • PROBABILITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|4 Videos
  • SETS, RELATIONS AND FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|30 Videos

Similar Questions

Explore conceptually related problems

Let the sequence a_1 , a_2 , a_3 ......... a_n form an A.P. then a_1^2 - a_2^2 + a_3^2 - a_4^2 +.....+ a_(2n-1)^2 - a_(2n)^2 is equal to:- (1) n/(2n-1)(a_1^2-a_(2n)^2) (2) (2n)/(n-1)(a_(2n)^2-a_1^2) (3) n/(n+1)(a_1^2+a_(2n)^2) (4)none of these

Let the sequence a_1 , a_2 , a_3 ......... a_n form an A.P. then a_1^2 - a_2^2 + a_3^2 - a_4^2 +.....+ a_(2n-1)^2 - a_(2n)^2 is equal to:- (1) n/(2n-1)(a_1^2-a_(2n)^2) (2) (2n)/(n-1)(a_(2n)^2-a_1^2) (3) n/(n+1)(a_1^2+a_(2n)^2) (4)none of these

Knowledge Check

  • If a_1, a_2, a_3,….,a_(2n) are in AP, then the value of a_1^2-a_2^2+a_3^2-a_4^2+....+a_(2n-1)^2 is equal to

    A
    `n/(2n-1)(a_1^2-a_(2n)^2)`
    B
    `n/(2n+1)(a_1^2-a_(2n)^2)`
    C
    `n/(2n-1)(a_1^2+a_(2n)^2)`
    D
    None of these
  • If a_1, a_2,…,a_n are in HP, then the expression a_1a_2+a_2a_3+…+a_(n-1)a_n is equal to

    A
    `(n-1)(a_1-a_n)`
    B
    `na_1a_n`
    C
    `(n-1)a_1a_n`
    D
    `n(a_1-a_n)`
  • Similar Questions

    Explore conceptually related problems

    If a_1,a_2,a_3,.....,a_n are in AP, prove that 1/(a_1a_2)+1/(a_2a_3)+1/(a_3a_4)+...+1/(a_(n-1)a_n)=(n-1)/(a_1a_n) .

    If a_i>0, i=1, 2, 3,..., n then prove that a_1/a_2+a_2/a_3+a_3/a_4+...+a_(n-1)/a_n+a_n/a_1gen .

    If a_1, a_2, a_3..... a_n in R^+ and a_1.a_2.a_3.........a_n = 1, then minimum value of (1+a_1 + a_1^2) (1 + a_2 + a_2^2)(1 + a_3 + a_3^2)........(1+ a_n + a_n^2) is equal to :-

    "If "a_1,a_2,a_3,.....,a_n" are in AP, prove that "a_(1)+a_(n)=a_(r)+a_(n-r+1)""

    If the nonzero numbers a_1,a_2,a_3,....,a_n are in AP, prove that 1/(a_1a_2a_3)+1/(a_2a_3a_4)+...+1/(a_(n-2)a_(n-1)a_n)=1/(2(a_2-a_1))(1/(a_1a_2)-1/(a_(n-1)a_n)) .

    If a_1,a_2,a_3,………….a_12 are in A.P. and /_\_1 =|(a_1a_5, a_1,a_2),(a_2a_6,a_2,a_3),(a_3a_7,a_3,a_4)|, |(a_2a_10, a_2,a_3),(a_3a_11,a_3,a_4),(a_4_12,a_4,a_5)| then /_\_1:/_\_2= (A) 1:2 (B) 2:1 (C) 1:1 (D) none of these