Home
Class 12
MATHS
let 0ltphiltpi/2, x=sum(n=0)^oocos^(2n)p...

let `0ltphiltpi/2`, `x=sum_(n=0)^oocos^(2n)phi`, `y=sum_(n=0)^oosin^(2n)phi` and `z=sum_(n=0)^oocos^(2n)phisin^(2n)phi`

A

`xyz = xz+y`

B

`xyz = xy+z`

C

`xyz=x+y+z`

D

`xyz =yz +x`

Text Solution

Verified by Experts

The correct Answer is:
b

Since , `x = sum _(n=0)^(oo) cos^(2n) phi `
`1 + cos^(2) phi + cos^(4) phi +….`
`= 1/(1-cos^(2) phi)=1/(sin^(2)phi)" " [ :' | cos x |lt 1]`
Similarly ` y = 1/(1-sin^(2)phi )= 1/(sin^(2)phi )`
and ` z = 1/(1-sin^(2)phi cos^(2)phi)`
` = 1/(1-1/x*1/y)=(xy)/(xy-1)`
` rArr xyz = xy +z`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 12|1 Videos
  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 13|1 Videos
  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 10|1 Videos
  • PROBABILITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|4 Videos
  • SETS, RELATIONS AND FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|30 Videos

Similar Questions

Explore conceptually related problems

let 0

If 0

Knowledge Check

  • If 0 lt theta, phi lt (pi)/(2), x = sum_(n=0)^(oo)cos^(2n)theta, y=sum_(n=0)^(oo)sin^(2n)phi and z=sum_(n=0)^(oo)cos^(2n)theta*sin^(2n)phi then :

    A
    `xy-z=(x+y)z`
    B
    `xy+yz+zx=z`
    C
    `xyz=4`
    D
    `xy+z=(x+y)z`
  • For 0 lt phi le ( pi )/( 2) , if x = sum_(n=0)^(oo) cos^(2n) phi , y = sum_(n=0)^(oo) sin ^(2n) phi , z= sum _(n=0)^(oo) cos^(2n) phi sin ^(2n ) phi , then

    A
    `xyz = xz +y`
    B
    `xyz = xy +z`
    C
    `xyz = x+y+z`
    D
    `xyz = yz + x`
  • If x=sum_(n=0)^(oo) a^(n),y=sum_(n=0)^(oo)b^(n),z=sum_(n=0)^(oo)(ab)^(n) , where a,blt1 , then

    A
    xyz=x+y+z
    B
    xz+yz=xy+z
    C
    xy+yz=xz+y
    D
    xy+xz=yz+x
  • Similar Questions

    Explore conceptually related problems

    If =sum_(n=0)^(oo)cos^(2n)theta,quad y=sum_(n=0)^(oo)sin^(2n)phi,z=sum_(n=0)^(oo)cos^(2n)theta sin^(2n)phi, where 0

    x=sum_(n=0)^(oo)cos^(2n)theta, y=sum_(n=0)^(oo)sin^(2n)theta, z=sum_(n=0)^(oo)cos^(2n)sin^(2n)theta, |cos theta| lt 1, |sin theta| lt 1 then x+y+z is equal to

    For 0 lt theta lt (pi)/( 2) if x = sum _(n=0)^(oo) cos ^(2n) theta , y = sum _(n=0) ^(oo) sin ^(2n) theta, z = sum _(n=0)^(oo) cos^(2n) theta sin ^(2n ) theta , then

    If x= sum_(n=0)^oo (Costheta)^(2n) , y= sum_(n=0)^oo (Sinphi)^(2n) , z= sum_(n=0)^oo (Cosphi)^(2n). (Sintheta)^(2n) Then which of the following is true ??

    If a=sum_(n=0)^(oo)x^(n),b=sum_(n=0)^(oo)y^(n),c=sum_(n=0)^(oo)(xy)^(n) where |x|,|y|<1 then