Home
Class 12
MATHS
If e^(e^(x)) = a(0) +a(1)x +a(2)x^(2)+....

If ` e^(e^(x)) = a_(0) +a_(1)x +a_(2)x^(2)+...` ,then find the value of a_ (0)

A

`a_(0)=1`

B

`a_(0)=e`

C

`a_(0)=e^(e )`

D

`a_(0)=e^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( a_0 \) in the series expansion of \( e^{e^x} \), we will follow these steps: ### Step 1: Understand the function The function given is \( e^{e^x} \). We need to express this in a power series form. ### Step 2: Expand \( e^x \) The Taylor series expansion of \( e^x \) around \( x = 0 \) is: \[ e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots \] ### Step 3: Substitute \( e^x \) into \( e^{e^x} \) Now, we substitute \( e^x \) into the exponential function: \[ e^{e^x} = e^{1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots} \] ### Step 4: Use the series expansion for \( e^u \) The series expansion for \( e^u \) is: \[ e^u = 1 + \frac{u}{1!} + \frac{u^2}{2!} + \frac{u^3}{3!} + \ldots \] where \( u = e^x \). ### Step 5: Find \( a_0 \) To find \( a_0 \), we evaluate \( e^{e^0} \): \[ e^{e^0} = e^1 = e \] Thus, the constant term \( a_0 \) in the series expansion is: \[ a_0 = e \] ### Final Answer The value of \( a_0 \) is \( e \). ---

To find the value of \( a_0 \) in the series expansion of \( e^{e^x} \), we will follow these steps: ### Step 1: Understand the function The function given is \( e^{e^x} \). We need to express this in a power series form. ### Step 2: Expand \( e^x \) The Taylor series expansion of \( e^x \) around \( x = 0 \) is: \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 31|1 Videos
  • SEQUENCES AND SERIES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 29|1 Videos
  • PROBABILITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|4 Videos
  • SETS, RELATIONS AND FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|30 Videos

Similar Questions

Explore conceptually related problems

If (1-x)^(-n)=a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+... find the value of,a_(0)+a_(1)+a_(2)+......+a_(n)

Given that (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+......+a_(2n)x^(2n) , find the values of a_(0)^(2)-a_(1)^(2)+a_(2)^(2)-a_(3)^(2)+....+a_(2n)^(2)

Knowledge Check

  • If (e^(x) +e^(5x))/( e^(3x)) = a_(0) +a_(1)x +a_(2)x^(2) +a_(3)x^(3) +…. then the value of 2a_(1) +2^(3) a_(3) +2^(5) a_(5)+ …… is

    A
    `e^(2) +e^(-2)`
    B
    `e^(4)-e^(-4)`
    C
    `e^(4)+e^(-4)`
    D
    0
  • If (1 + x + x^(2))^(48) = a_(0) + a_(1) x + a_(2) x^(2) + ... + a_(96) x^(96) , then value of a_(0) - a_(2) + a_(4) - a_(6) + … + a_(96) is

    A
    `-1`
    B
    0
    C
    1
    D
    48
  • If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

    A
    `2^(19) (2^(19) -1)`
    B
    `2^(20)(2^(19)-1)`
    C
    `2^(19) (2^(20)-1)`
    D
    `2^(20) (2^(20)-19)`
  • Similar Questions

    Explore conceptually related problems

    Given that (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+......+a_(2n)x^(2n) , find the values of a_(0)-a_(1)+a_(2)-a_(3)......+a_(2n) ,

    If (1-x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)++a_(2n)x^(2n) find the value of a_(0)+a_(2)+a_(4)++a_(2n)

    If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)++a_(2n)x^(2n) find the value of a_(0)+a_(3)+a_(6)++,n in N

    If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+......a_(2)nx^(2n) Find the value of a_(0)+a_(3)+a_(6)+......;!=psi lon N

    (3+x^(2008)+x^(2009))^(2010)=a_(0)+a_(1)x+a_(2)x^(2)+...+a_(n)x^(n) then the value of a_(0)-(1)/(2)a_(1)-(1)/(2)a_(2)+a_(3)-(1)/(2)a_(4)-(1)/(2)a_(5)+a_(6)-... is 3^(2010) b.1 c.2^(2010)d ,none of these