Home
Class 12
MATHS
If tan^(-1)((x^(2)-2y^(2))/(x^(2)+2y^(2)...

If `tan^(-1)((x^(2)-2y^(2))/(x^(2)+2y^(2)))=a,"show that "(dy)/(dx)=(x(1-tana))/(2y(1+tana))`

Text Solution

Verified by Experts

`tan^(-1)((x^(2)-2y^(2))/(x^(2)+2y^(2)))=a`
`therefore(x^(2)-2y^(2))/(x^(2)+2y^(2))=tana`
`thereforex^(2)-2y^(2)=(x^(2)+2y^(2))tana`
`thereforex^(2)-2y^(2)=(tana)x^(2)+(2tana)y^(2)`
`therefore(1-tana)x^(2)=2(1+tana)y^(2)`
`thereforey^(2)=[(1-tana)/(2(1+tana))]x^(2)`
Differentiating both sides w.r.t. x, we get,
`2y(dy)/(dx)=[(1-tana)/(2(1+tana))]xx2x`
`therefore(dy)/(dx)=(x(1-tana))/(2y(1+tana))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Ex. 21 Solved Examples|1 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Ex. 22 Solved Examples|1 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Ex. 18 Solved Examples|1 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise M.C.Q|12 Videos
  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple Choice Questions|15 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=a , show that (dy)/(dx)=(x(1-tana))/(y(1+tana)).

If tan ^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=a, prove that (dy)/(dx)=(x)/(y)((1-tan a))/((1+tan a))

Knowledge Check

  • If y=tan^(-1)[(x-sqrt(1-x^(2)))/(x+sqrt(1-x^(2)))]," then "(dy)/(dx)=

    A
    `(-1)/(sqrt(1-x^(2)))`
    B
    `(1)/(sqrt(1-x^(2)))`
    C
    `(-x)/(sqrt(1-x^(2)))`
    D
    `(x)/(sqrt(1-x^(2)))`
  • Similar Questions

    Explore conceptually related problems

    If cos^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=tan^(-1)a, prove that (dy)/(dx)=(y)/(x)

    If cos^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=tan^(-1)a, prove that (dy)/(dx)=(y)/(x)

    If cos^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=tan^(-1)a , prove than (dy)/(dx)=(y)/(x).

    If cos^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=tan^(-1)a then prove that (dy)/(dx)=(y)/(x)

    If tan^(-1)((y)/(x))-(1)/(2)log_(a)(x^(2)+y^(2))=0, then (dy)/(dx) is

    (dy)/(dx)=(x+y+1)/(2x+2y+3)

    If log(x^(2)+y^(2))=2tan^(-1)((y)/(x)), show that (dy)/(dx)=(x+y)/(x-y)