Home
Class 12
MATHS
Prove the following properties of defini...

Prove the following properties of definite integrals :
`int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx`

Text Solution

Verified by Experts

We shall use the following results :
`int_(a)^(b)f(x)dx=int_(a)^(b)f(t)dt" …(1)"`
and `int_(a)^(b)f(x)dx=-int_(b)^(a)f(x)dx" …(2)"`
Consider `int_(0)^(a)f(x)dx`
Put `x=a-t,` Then `dx=-dt`
When `x=0, a-t =0 " "therefore" "t=a.` When `x = a, a-t =a" "therefore t =0`
`therefore" "int_(0)^(a)f(x)dx=int_(a)^(0)f(a-t)(-dt)=-int_(a)^(0)f(a-t)dt`
`=int_(0)^(a)f(a-t)dt`
`=int_(0)^(a)f(a-x)dx`
`therefore int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice|66 Videos
  • CONTINUITY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|6 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise M.C.Q|12 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2a)f(x)dx-int_(0)^(a)f(x)dx=

int_(0)^(2a)f(x)dx-int_(0)^(a)f(x)dx=

Prove that int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx

Prove that: int_(0)^(2a)f(x)dx=int_(0)^(2a)f(2a-x)dx

If int_(0)^(2a) f(x)dx=int_(0)^(2a) f(x)dx , then

If : int_(0)^(2a)f(x)dx=2.int_(0)^(a)f(x)dx , then :

Prove that int_(0)^(2a)f(x)dx=int_(a)^(a)[f(a-x)+f(a+x)]dx

int_(0)^(a)[f(x)+f(a-x)]dx=

Evaluate the following integrals: int_(a)^(b)f(x)dx +int_(b)^(a)f(x)dx

Evaluate the following definite integrals: int_(0)^(oo)e^(-x)dx