Home
Class 12
MATHS
The derivative of tan^(-1) ((2x)/(1-x^(...

The derivative of `tan^(-1) ((2x)/(1-x^(2)))` with respect to
` cos^(-1) sqrt(1 - x^(2))` is

A

`(sqrt( 1 -x^(2)))/(1 + x^(2))`

B

`(1)/(sqrt( 1 - x^(2)))`

C

`(2)/(sqrt( 1-x^(2)) (2 + x^(2)))`

D

`(2sqrt(1- x^(2)))/(1 +x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( \tan^{-1} \left( \frac{2x}{1-x^2} \right) \) with respect to \( \cos^{-1} \sqrt{1 - x^2} \), we can use the chain rule. Let's denote: - \( U = \tan^{-1} \left( \frac{2x}{1-x^2} \right) \) - \( V = \cos^{-1} \sqrt{1 - x^2} \) We want to find \( \frac{dU}{dV} \). ### Step 1: Differentiate \( U \) with respect to \( x \) Using the derivative of the inverse tangent function, we have: \[ \frac{dU}{dx} = \frac{1}{1 + \left( \frac{2x}{1-x^2} \right)^2} \cdot \frac{d}{dx} \left( \frac{2x}{1-x^2} \right) \] Now, we need to differentiate \( \frac{2x}{1-x^2} \). Using the quotient rule: \[ \frac{d}{dx} \left( \frac{2x}{1-x^2} \right) = \frac{(1-x^2)(2) - (2x)(-2x)}{(1-x^2)^2} = \frac{2(1-x^2) + 4x^2}{(1-x^2)^2} = \frac{2 + 2x^2}{(1-x^2)^2} = \frac{2(1+x^2)}{(1-x^2)^2} \] Substituting this back, we have: \[ \frac{dU}{dx} = \frac{1}{1 + \left( \frac{2x}{1-x^2} \right)^2} \cdot \frac{2(1+x^2)}{(1-x^2)^2} \] Next, we simplify \( 1 + \left( \frac{2x}{1-x^2} \right)^2 \): \[ 1 + \left( \frac{2x}{1-x^2} \right)^2 = 1 + \frac{4x^2}{(1-x^2)^2} = \frac{(1-x^2)^2 + 4x^2}{(1-x^2)^2} = \frac{1 - 2x^2 + x^4 + 4x^2}{(1-x^2)^2} = \frac{1 + 2x^2 + x^4}{(1-x^2)^2} \] Thus, we have: \[ \frac{dU}{dx} = \frac{2(1+x^2)}{(1-x^2)^2} \cdot \frac{(1-x^2)^2}{1 + 2x^2 + x^4} = \frac{2(1+x^2)}{1 + 2x^2 + x^4} \] ### Step 2: Differentiate \( V \) with respect to \( x \) Using the derivative of the inverse cosine function, we have: \[ \frac{dV}{dx} = -\frac{1}{\sqrt{1 - \left( \sqrt{1 - x^2} \right)^2}} \cdot \frac{d}{dx} \left( \sqrt{1 - x^2} \right) \] Now, we differentiate \( \sqrt{1 - x^2} \): \[ \frac{d}{dx} \left( \sqrt{1 - x^2} \right) = \frac{-x}{\sqrt{1 - x^2}} \] Thus, we have: \[ \frac{dV}{dx} = -\frac{1}{\sqrt{1 - (1 - x^2)}} \cdot \left( -\frac{x}{\sqrt{1 - x^2}} \right) = \frac{x}{\sqrt{x^2}} = \frac{x}{|x|} = 1 \text{ (for } x > 0\text{)} \] ### Step 3: Find \( \frac{dU}{dV} \) Using the chain rule: \[ \frac{dU}{dV} = \frac{dU/dx}{dV/dx} = \frac{\frac{2(1+x^2)}{1 + 2x^2 + x^4}}{1} = \frac{2(1+x^2)}{1 + 2x^2 + x^4} \] ### Final Answer: Thus, the derivative of \( \tan^{-1} \left( \frac{2x}{1-x^2} \right) \) with respect to \( \cos^{-1} \sqrt{1 - x^2} \) is: \[ \frac{2(1+x^2)}{1 + 2x^2 + x^4} \]

To find the derivative of \( \tan^{-1} \left( \frac{2x}{1-x^2} \right) \) with respect to \( \cos^{-1} \sqrt{1 - x^2} \), we can use the chain rule. Let's denote: - \( U = \tan^{-1} \left( \frac{2x}{1-x^2} \right) \) - \( V = \cos^{-1} \sqrt{1 - x^2} \) We want to find \( \frac{dU}{dV} \). ### Step 1: Differentiate \( U \) with respect to \( x \) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (LOGARITHMIC DIFFERENTIATION )|17 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (DERIVATIVE OF IMPLICIT FUNCTION)|21 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 DERIVATIVE OF INVERSE TRIGONOMETRIC FUNCTIONS (BY SUBSTITUTION)|18 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

The derivative of cos^(-1)(2xsqrt(1-x^(2))) with respect to cos^(-1)x is :

The derivative of tan^(-1)2(x)/(1-x^(2)) with respect to sin^(-1)2(x)/(1+x^(2)), is

Knowledge Check

  • The derivative of sin^(-1)((2x)/(1+x^(2))) with respect to cos^(-1)((1-x^(2))/(1+x^(2))) is

    A
    `-1`
    B
    1
    C
    2
    D
    `-2`
  • Derivative of tan^(-1)((x)/(sqrt( 1 - x^(2)))) with respect to sin^(-1) (3x - 4x^(3)) is

    A
    `(1)/(sqrt( 1- x^(2)))`
    B
    `(3)/(sqrt(1 -x^(2)))`
    C
    3
    D
    `(1)/(3)`
  • The derivative of sin^(-1)""(2x)/(1+x^(2)) with respect to cos^(-1)""(1-x^(2))/(1+x^(2)) is

    A
    `-1`
    B
    1
    C
    2
    D
    4
  • Similar Questions

    Explore conceptually related problems

    (tan^(-1)x)/(sqrt(1-x^(2))) withrespectto sin ^(-1)(2x sqrt(1-x^(2)))

    The derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x)) with respect to tan^(-1)((2x sqrt(1-x^(2)))/(1-2x^(2))) at x=0 is (1)/(8)(b)(1)/(4)(c)(1)/(2)(d)1

    Derivative of tan ^(-1) ""((x)/(sqrt(1-x^(2)))) with respect sin ^(-1) ( 3x - 4x^(3)) is

    The derivative of sin^(-1)((sqrt(1+x)+sqrt(1-x))/(2)) with respect to x is

    The derivative of tan^(-1)""(sqrt(1+x^(2)-1))/(x) with respect to tan^(-1)2x(sqrt(1-x^(2)))/(1-2x^(2)) at x=0 is