Home
Class 12
MATHS
If sec^(-1) ((1 + x)/(1-y)) = a , " the...

If ` sec^(-1) ((1 + x)/(1-y)) = a , " then " (dy)/(dx) ` is

A

`(y-1)/(x+1)`

B

`(y + 1)/( x-1)`

C

`(x-1)/(y-1)`

D

`(x-1)/(y+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative \( \frac{dy}{dx} \) given the equation: \[ \sec^{-1} \left( \frac{1 + x}{1 - y} \right) = a \] ### Step-by-Step Solution: 1. **Rewrite the equation in terms of secant**: \[ \frac{1 + x}{1 - y} = \sec(a) \] 2. **Cross-multiply to eliminate the fraction**: \[ 1 + x = \sec(a) \cdot (1 - y) \] 3. **Distribute \( \sec(a) \)**: \[ 1 + x = \sec(a) - \sec(a) y \] 4. **Rearranging the equation to isolate \( y \)**: \[ \sec(a) y = \sec(a) - (1 + x) \] \[ y = \frac{\sec(a) - (1 + x)}{\sec(a)} \] 5. **Differentiate both sides with respect to \( x \)**: Using implicit differentiation: \[ \frac{dy}{dx} = \frac{d}{dx} \left( \frac{\sec(a) - (1 + x)}{\sec(a)} \right) \] 6. **Since \( \sec(a) \) is a constant with respect to \( x \)**, we can differentiate: \[ \frac{dy}{dx} = \frac{0 - 1}{\sec(a)} = -\frac{1}{\sec(a)} \] 7. **Substituting back for \( \sec(a) \)**: Recall that \( \sec(a) = \frac{1 + x}{1 - y} \): \[ \frac{dy}{dx} = -\frac{1}{\frac{1 + x}{1 - y}} = -\frac{1 - y}{1 + x} \] 8. **Final expression for \( \frac{dy}{dx} \)**: \[ \frac{dy}{dx} = \frac{y - 1}{1 + x} \] ### Final Answer: \[ \frac{dy}{dx} = \frac{y - 1}{1 + x} \]

To solve the problem, we need to find the derivative \( \frac{dy}{dx} \) given the equation: \[ \sec^{-1} \left( \frac{1 + x}{1 - y} \right) = a \] ### Step-by-Step Solution: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (HIGHER ORDER DERIVATIVE )|15 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|80 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (LOGARITHMIC DIFFERENTIATION )|17 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

If e^(y)(x+1)=1 ,then (dy)/(dx) is

if y=cos^(-1)((1-x)/(1+x)) then find (dy)/(dx)

Knowledge Check

  • If y = cot^(-1) ((1 -x)/(1 +x)) " then " (dy)/(dx) = ?

    A
    `(-1)/((1 +x^(2)))`
    B
    `(1)/((1 + x^(2)))`
    C
    `(1)/((1 + x^(2))^(.^(3)//_(2)))`
    D
    none of these
  • If y = sec^(-1) ((1)/(2x^(2) -1)) " then " (dy)/(dx) = ?

    A
    `(-2)/((1 + x^(2)))`
    B
    `(-2)/((1 -x^(2)))`
    C
    `(-2)/(sqrt(1 -x^(2)))`
    D
    none of these
  • If y = sec^(-1) ((x^(2) + 1)/(x^(2) -1)) " then " (dy)/(dx) = ?

    A
    `(-2)/((1 + x^(2)))`
    B
    `(2)/((1 + X^(2)))`
    C
    `(-1)/((1 - X^(2)))`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    If y=x+(1)/(x+y)," then: "(dy)/(dx)=

    If y = sqrt((sec x -1)/(sec x + 1)) " then " (dy)/(dx) = ?

    If y = tan^(-1) (sec x + tan x) " then " (dy)/(dx)= ?

    If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

    If y= sin^(-1)"" (2x )/(1+x^2) + sec^(-1)"" (1-x^2)/(1-x^2) , then (dy)/(dx)=