Home
Class 12
MATHS
int(1)/(x)(log(ex)e)dx is equal to...

`int(1)/(x)(log_(ex)e)dx` is equal to

A

`log_(e)(1-log_(e)x)+C`

B

`log_(e)(log_(e)ex-1)+C`

C

`log_(e)(log_(e)x-1)+C`

D

`log_(e)(log_(e)x+1)+C`

Text Solution

Verified by Experts

The correct Answer is:
D

Let `l=int(1)/(x)(log_(ex)e)dx=int(1)/(x(1+log_(e)x))dx`
Put `log_(e)x=t" "rArr" "(1)/(x)dx=dt`
`therefore" "l=int(dt)/((1+t))=log_(e)(1+t)+C`
`=log_(e)(1+log_(e)x)+C`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int1/(xcos^2(log_ex))dx

int_(1)^(x)log_(e)[x]dx

Knowledge Check

  • The value of int _(1)^(e) 10^(log_(e)x) dx is equal to

    A
    `10 log_(e) (10e)`
    B
    `(10e-1)/(log_(e)10e)`
    C
    `(10e)/(log_(e)10 e)`
    D
    `(10 e) log_(e) (10e)`
  • int{sin(log_(e)x)+cos(log_(e)x)}dx is equal to

    A
    `sin(log_(e)x)+cos(log_(e)x)+C`
    B
    `xsin (log_(e)x)+C`
    C
    `xcos(log_(e)x)+C`
    D
    none of these
  • The integral int_(1)^(e){((x)/(e))^(2x)-((e)/(x))^(x)} "log"_(e)x dx is equal to

    A
    `(3)/(2)-e-(1)/(2e^(2))`
    B
    `-(1)/(2)+(1)/(e)-(1)/(2e^(2))`
    C
    `(1)/(2)-e-(1)/(e^(2))`
    D
    `(3)/(2)-(1)/(e)-(1)/(2e^(2))`
  • Similar Questions

    Explore conceptually related problems

    int x^(x)(1+log_(e)x)dx

    int_(1)^(e)(e^(x)(x log_(e)x+1))/(x)dx is equal to

    int(1)/(x cos^(2)(log_(e)x))dx

    int_(1)^(3)|(2-x)log_(e )x|dx is equal to:

    int cos(log_e x) dx is equal to