Home
Class 12
MATHS
int(3+2cosx)/((2+3cosx)^(2))dx is equal ...

`int(3+2cosx)/((2+3cosx)^(2))dx` is equal to

A

`((sinx)/(2+3cosx))+C`

B

`((2cosx)/(2+3sinx))+C`

C

`((2cosx)/(2+3cosx))+C`

D

`((2sinx)/(2+3sinx))+C`

Text Solution

Verified by Experts

The correct Answer is:
A

Divide numerator and denominator by `sin^(2)x`, then
`int(("3 cosec"^(2)x+"2 cosec x cot x"))/(("2 cosec x "+3 cot x)^(2))dx`
Put `" 2 cosec x "+"3 cot x = t`
` therefore" "(-"2 cosec x cot x "-"3 cosec"^(2)x)dx=dt`
`=int-(dt)/(t^(2))=(1)/(t)+C=(1)/("2 cosec x"+"3 cot x")+C`
`=(sinx)/((2+3 cos x))+C`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(x^(2))/((xsin x+cosx)^(2))dx is equal to

int(x^(2))/((x sinx+cosx)^(2))dx is equal to

Knowledge Check

  • int(3+2cos x)/((2+3cosx)^(2))dx=

    A
    `(sinx)/(2+3cosx)+c`
    B
    `(2cosx)/(2+sinx)+c`
    C
    `(2cos x)/(2+3sinx)+c`
    D
    `(2sinx)/(2+3sinx)+c`
  • int(cos2x)/((sinx+cosx)^(2))dx is equal to

    A
    `(-1)/(sinx+cos)+C`
    B
    `log(sinx+cosx)+C`
    C
    `log(sinx-cosx)+C`
    D
    `log(sinx+cosx)^(2)+C`
  • The value of int(cos2x)/(sinx+cosx)^(2) dx is equal to

    A
    `-1/(sinx+cosx)+C`
    B
    `ln(sinx+cosx)+C`
    C
    `ln(sinx-cosx)+C`
    D
    `ln(sinx+cosx)^(2)+C`
  • Similar Questions

    Explore conceptually related problems

    int(cosx-sinx)/(1+2sin x cosx)dx is equal to

    int(1-cosx)cosec^(2)x dx is equal to

    int (cosx)/(sin^2x(sinx+cosx)) dx is equal to

    int(cos 2x)/(cosx) dx is equal to

    int cosx/(sin^2x(sinx+cosx) dx is equal to