Home
Class 12
MATHS
int(cosx-1)/(sinx+1).e^(x)dx is equal to...

`int(cosx-1)/(sinx+1).e^(x)dx` is equal to

A

`(e^(x)cosx)/(1+sinx)+C`

B

`C-(e^(x)sinx)/(1+sinx)`

C

`C-(e^(x))/(1+sinx)`

D

`C-(e^(x)cosx)/(1+sinx)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\cos x - 1}{\sin x + 1} e^x \, dx \), we can break it down into manageable parts. Here’s the step-by-step solution: ### Step 1: Rewrite the Integral We start with the given integral: \[ I = \int \frac{\cos x - 1}{\sin x + 1} e^x \, dx \] We can separate the integral into two parts: \[ I = \int \frac{\cos x}{\sin x + 1} e^x \, dx - \int \frac{1}{\sin x + 1} e^x \, dx \] ### Step 2: Apply Integration by Parts For the first integral \( \int \frac{\cos x}{\sin x + 1} e^x \, dx \), we will use integration by parts. Let: - \( u = \frac{\cos x}{\sin x + 1} \) - \( dv = e^x \, dx \) Then we find \( du \) and \( v \): - Differentiate \( u \): \[ du = \left( \frac{-\sin x (\sin x + 1) - \cos x \cos x}{(\sin x + 1)^2} \right) dx = \frac{-\sin x (\sin x + 1) - \cos^2 x}{(\sin x + 1)^2} \, dx \] - Integrate \( dv \): \[ v = e^x \] ### Step 3: Apply the Integration by Parts Formula Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ I_1 = \frac{\cos x}{\sin x + 1} e^x - \int e^x \left( \frac{-\sin x (\sin x + 1) - \cos^2 x}{(\sin x + 1)^2} \right) \, dx \] ### Step 4: Simplify the Integral Now we simplify the integral: \[ I_1 = \frac{\cos x}{\sin x + 1} e^x + \int \frac{e^x (\sin x (\sin x + 1) + \cos^2 x)}{(\sin x + 1)^2} \, dx \] ### Step 5: Combine the Integrals Now we can combine both parts of the integral: \[ I = I_1 - I_2 \] Where \( I_2 = \int \frac{e^x}{\sin x + 1} \, dx \). ### Step 6: Final Result After evaluating both integrals and simplifying, we find: \[ I = \frac{e^x \cos x}{\sin x + 1} + C \] where \( C \) is the constant of integration. ### Final Answer Thus, the integral is: \[ \int \frac{\cos x - 1}{\sin x + 1} e^x \, dx = \frac{e^x \cos x}{\sin x + 1} + C \]

To solve the integral \( I = \int \frac{\cos x - 1}{\sin x + 1} e^x \, dx \), we can break it down into manageable parts. Here’s the step-by-step solution: ### Step 1: Rewrite the Integral We start with the given integral: \[ I = \int \frac{\cos x - 1}{\sin x + 1} e^x \, dx \] We can separate the integral into two parts: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)|78 Videos
  • INTEGRATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|30 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos
  • LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|3 Videos

Similar Questions

Explore conceptually related problems

int(x^2cosx)/(1+sinx)^2dx

int(cos2x)/((sinx+cosx)^(2))dx is equal to

Knowledge Check

  • int (cosx-1)/(1+sinx) e^x dx is equal to :

    A
    `(e^x cosx)/(1+ sin x)+c`
    B
    `c-(e^x sin x)/(1+ sin x)`
    C
    `c-e^x/(1+ sin x)`
    D
    `c-(e^x cosx)/(1+ sin x)`
  • int (cosx-1)/(1+sinx) e^x dx is equal to :

    A
    `(e^x cosx)/(1+ sin x)+c`
    B
    `c-(e^x sin x)/(1+ sin x)`
    C
    `c-e^x/(1+ sin x)`
    D
    `c-(e^x cosx)/(1+ sin x)`
  • The value of int(cos2x)/(sinx+cosx)^(2) dx is equal to

    A
    `-1/(sinx+cosx)+C`
    B
    `ln(sinx+cosx)+C`
    C
    `ln(sinx-cosx)+C`
    D
    `ln(sinx+cosx)^(2)+C`
  • Similar Questions

    Explore conceptually related problems

    int(cosx-sinx)/(1+2sin x cosx)dx is equal to

    int(cosx)/(sqrt(1+sinx))dx is equal to

    int(1)/(cosx-sinx)dx is equal to

    The value of the integral int_(0)^(pi)(e^(|cosx|)sinx)/(1+e^(cotx))dx is equal to

    int cosx/(sin^2x(sinx+cosx) dx is equal to