Home
Class 12
MATHS
A=[(1,0,0),(0,1,1),(0,2,4)]; I=[(1,0,0),...

`A=[(1,0,0),(0,1,1),(0,2,4)]; I=[(1,0,0),(0,1,0),(0,0,1)],A^-1=1/6[A^2+cA+dI],` where `c,d in R,` then pair of values (c,d)

A

`(6, 11)`

B

`(6, -11)`

C

`(-6, 11)`

D

`(-6,-11)`

Text Solution

Verified by Experts

The correct Answer is:
C

Given, `A= [[1,0,0],[0,1,1],[0,-2,4]], A^(-1) = 1/6 [[6,0,0],[0,4,-1],[0,2,1]]`
`A^(2)= [[1,0,0],[0,1,1],[0,-2,4]] [[1,0,0],[0,1,1],[0,-2,4]]= [[1,0,0],[0,-1,5],[0,-10,14]]`
`cA= [[c,0,0],[0,c,c],[0,-2c,4c]] ,dI= [[d,0,0],[0,d,0],[0,0,d]]`
`therefore` By `A^(-1)=1/6[A^(2) + cA+dI]`
`rArr 6= 1 + c+d` [By equality of matrices]
`therefore (-6,11)` satisfy the relation.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|14 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] A^(-1)=1/6(A^(2)+CA+DI) then C and D equal to

Let A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] and A^-1=[1/6(A^2+cA+dI)] Then value of c and d are (a) (=6,-11) (b) (6,11) (c) (-6,11) (d) (6,-11)

Knowledge Check

  • Let I = [{:(1, 0, 0),(0 ,1, 0),(0,0,1):}] and P = [{:(1, 0, 0),(0 ,-1, 0),(0,0,-2):}] . Then the matrix p^(3) + 2P^(2) is equal to

    A
    P
    B
    I-P
    C
    2I + P
    D
    2I - P
  • If A=[[1, 0, 0], [0, 1, 1], [0, -2, 4]] and A^(-1)=(1)/(6)(A^(2)+cA+dI) , where c, din R and I is an identity matrix of order 3, then (c, d)=

    A
    `(-6, -11)`
    B
    `(-6, 11)`
    C
    `(6, -11)`
    D
    `(6, 11)`
  • Similar Questions

    Explore conceptually related problems

    A= [{:( 1,0,0) ,( 0,1,1) , ( 0,-2,4) :}] ,I= [{:( 1,0,0) ,( 0,1,0),( 0,0,1) :}]and A^(-1) =[(1)/(6) (A^(2)+cA +dt)] then , the value of c and d are

    If A = [(1,0,0), (0,1,1), (0, -2,4)], 6A ^ -1 = A ^ 2 + cA + dI, then (c, d) =

    if [{:(1,2,a),(0,1,4),(0,0,1):}]=[{:(1,18,2007),(0,1,36),(0,0,1):}] then find the value of n

    If A=[[1,0,0],[0,1,1],[0,-2,4]] and 6A^(-1)=A^2+cA+dI . Then c+d is

    Let I=((1,0,0),(0,1,0),(0,0,1)) and P=((1,0,0),(0,-1,0),(0,0,-2)) . Then the matrix p^3+2P^2 is equal to

    If A=[(0,0,0,0),(0,0,0,0),(1,0,0,0),(0,1,0,0)] then (A) A^2=I (B) A^2=0 (C) A^3=0 (D) none of these