Home
Class 12
MATHS
A=[(1,0,0),(0,1,1),(0,2,4)]; I=[(1,0,0),...

`A=[(1,0,0),(0,1,1),(0,2,4)]; I=[(1,0,0),(0,1,0),(0,0,1)],A^-1=1/6[A^2+cA+dI],` where `c,d in R,` then pair of values (c,d)

A

`(6, 11)`

B

`(6, -11)`

C

`(-6, 11)`

D

`(-6,-11)`

Text Solution

Verified by Experts

The correct Answer is:
C

Given, `A= [[1,0,0],[0,1,1],[0,-2,4]], A^(-1) = 1/6 [[6,0,0],[0,4,-1],[0,2,1]]`
`A^(2)= [[1,0,0],[0,1,1],[0,-2,4]] [[1,0,0],[0,1,1],[0,-2,4]]= [[1,0,0],[0,-1,5],[0,-10,14]]`
`cA= [[c,0,0],[0,c,c],[0,-2c,4c]] ,dI= [[d,0,0],[0,d,0],[0,0,d]]`
`therefore` By `A^(-1)=1/6[A^(2) + cA+dI]`
`rArr 6= 1 + c+d` [By equality of matrices]
`therefore (-6,11)` satisfy the relation.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|14 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos

Similar Questions

Explore conceptually related problems

Let A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] and A^-1=[1/6(A^2+cA+dI)] Then value of c and d are (a) (=6,-11) (b) (6,11) (c) (-6,11) (d) (6,-11)

A= [{:( 1,0,0) ,( 0,1,1) , ( 0,-2,4) :}] ,I= [{:( 1,0,0) ,( 0,1,0),( 0,0,1) :}]and A^(-1) =[(1)/(6) (A^(2)+cA +dt)] then , the value of c and d are

If A = [(1,0,0), (0,1,1), (0, -2,4)], 6A ^ -1 = A ^ 2 + cA + dI, then (c, d) =

if [{:(1,2,a),(0,1,4),(0,0,1):}]=[{:(1,18,2007),(0,1,36),(0,0,1):}] then find the value of n

If A=[[1,0,0],[0,1,1],[0,-2,4]] and 6A^(-1)=A^2+cA+dI . Then c+d is

Let I=((1,0,0),(0,1,0),(0,0,1)) and P=((1,0,0),(0,-1,0),(0,0,-2)) . Then the matrix p^3+2P^2 is equal to

Let I = [{:(1, 0, 0),(0 ,1, 0),(0,0,1):}] and P = [{:(1, 0, 0),(0 ,-1, 0),(0,0,-2):}] . Then the matrix p^(3) + 2P^(2) is equal to

If A=[[1, 0, 0], [0, 1, 1], [0, -2, 4]] and A^(-1)=(1)/(6)(A^(2)+cA+dI) , where c, din R and I is an identity matrix of order 3, then (c, d)=

If A=[(0,0,0,0),(0,0,0,0),(1,0,0,0),(0,1,0,0)] then (A) A^2=I (B) A^2=0 (C) A^3=0 (D) none of these

ARIHANT MATHS-MATRICES -Exercise (Questions Asked In Previous 13 Years Exam)
  1. A=[(1,0,0),(0,1,1),(0,2,4)]; I=[(1,0,0),(0,1,0),(0,0,1)],A^-1=1/6[A^2+...

    Text Solution

    |

  2. If P= [[sqrt(3)/2, 1/2],[-1/2 , sqrt(3)/ 2]], A = [[1,1],[0,1]]and Q= ...

    Text Solution

    |

  3. If A=[(1,0),(1,1)] and I=[(1,0),(0,1)] then which one of the following...

    Text Solution

    |

  4. If A^(2) - A + I = 0 then A^(-1) is equal to

    Text Solution

    |

  5. Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U1,U2,U3 be column matrices sat...

    Text Solution

    |

  6. Let A = [(1,0,0), (2,1,0), (3,2,1)], and U1, U2 and U3 are columns of ...

    Text Solution

    |

  7. If A= ((1,0,0),(2,1,0),(3,2,1)), U(1), U(2), and U(3) are column matri...

    Text Solution

    |

  8. Let A=[{:(1,2),(3,4):}]and B = [{:(a,0),(0,b):}] where a, b are natura...

    Text Solution

    |

  9. If A and B are square matrices of size nxxn such that A^2-B^2 = (A-B)(...

    Text Solution

    |

  10. Let A= [[5,5alpha,alpha],[0,alpha,5alpha],[0,0,5]] . If A^2 = 25, the...

    Text Solution

    |

  11. Let Ad nB be 3xx3 matrtices of ral numbers, where A is symmetric, "B" ...

    Text Solution

    |

  12. Let A be a square matrix all of whose entries are integers. Then wh...

    Text Solution

    |

  13. Let A be a 2xx2 matrix with real entries. Let I be the 2xx2 identi...

    Text Solution

    |

  14. Let A be the set of all 3 xx 3 symmetric matrices all of whose entrie...

    Text Solution

    |

  15. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  16. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  17. Let A be a 2xx2 matrix Statement -1 adj (adjA)=A Statement-2 abs(a...

    Text Solution

    |

  18. The number of 3xx3 matrices A whose entries are either 0or1 and for wh...

    Text Solution

    |

  19. Let p be an odd prime number and Tp be the following set of 2 x 2 ma...

    Text Solution

    |

  20. Let p be an odd prime number and Tp, be the following set of 2 xx 2 ma...

    Text Solution

    |