Home
Class 12
MATHS
If a=hat(i)+hat(j)-2hat(k), b=2hat(i)-ha...

If `a=hat(i)+hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k)` and `c=3hat(i)-hat(k)` and `c=ma+nb`, then `m+n` is equal to

A

0

B

1

C

2

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given vectors: \[ \mathbf{a} = \hat{i} + \hat{j} - 2\hat{k} \] \[ \mathbf{b} = 2\hat{i} - \hat{j} + \hat{k} \] \[ \mathbf{c} = 3\hat{i} - \hat{k} \] We are given that \(\mathbf{c} = m\mathbf{a} + n\mathbf{b}\). Our goal is to find the values of \(m\) and \(n\) and then compute \(m+n\). ### Step 1: Express \(m\mathbf{a} + n\mathbf{b}\) First, we express \(m\mathbf{a}\) and \(n\mathbf{b}\): \[ m\mathbf{a} = m(\hat{i} + \hat{j} - 2\hat{k}) = m\hat{i} + m\hat{j} - 2m\hat{k} \] \[ n\mathbf{b} = n(2\hat{i} - \hat{j} + \hat{k}) = 2n\hat{i} - n\hat{j} + n\hat{k} \] Now, we can combine these two expressions: \[ m\mathbf{a} + n\mathbf{b} = (m + 2n)\hat{i} + (m - n)\hat{j} + (-2m + n)\hat{k} \] ### Step 2: Set the coefficients equal to those in \(\mathbf{c}\) Since \(\mathbf{c} = 3\hat{i} + 0\hat{j} - 1\hat{k}\), we can equate the coefficients from both sides: 1. For \(\hat{i}\): \[ m + 2n = 3 \quad \text{(1)} \] 2. For \(\hat{j}\): \[ m - n = 0 \quad \text{(2)} \] 3. For \(\hat{k}\): \[ -2m + n = -1 \quad \text{(3)} \] ### Step 3: Solve the equations From equation (2), we can express \(m\) in terms of \(n\): \[ m = n \quad \text{(4)} \] Substituting equation (4) into equation (1): \[ n + 2n = 3 \implies 3n = 3 \implies n = 1 \] Using equation (4) again to find \(m\): \[ m = n = 1 \] ### Step 4: Verify with the third equation Now, we can verify our values of \(m\) and \(n\) using equation (3): \[ -2(1) + 1 = -2 + 1 = -1 \] This holds true, so our values are correct. ### Step 5: Calculate \(m+n\) Finally, we calculate \(m+n\): \[ m+n = 1 + 1 = 2 \] Thus, the final answer is: \[ \boxed{2} \]

To solve the problem, we start with the given vectors: \[ \mathbf{a} = \hat{i} + \hat{j} - 2\hat{k} \] \[ \mathbf{b} = 2\hat{i} - \hat{j} + \hat{k} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTORS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise (VECTORS ) Exercise 2 ( Topical problems )|88 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|20 Videos

Similar Questions

Explore conceptually related problems

If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j)+hat(k) , then find the value of (atimesb)*(atimesc) .

If h is the altitude of a parallelopiped determined by the vectors a,b,c and the base is taken to be the parallelogram determined by a and b where a= hat(i) +hat(j) + hat(k), b= 2hat(i) + 4hat(j) - hat(k) and c= hat(i) +hat(j) + 3hat(k) , then the value of 19h^(2) is

Knowledge Check

  • If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

    A
    `20hat(i)-3hat(j)+7hat(k)`
    B
    `20hat(i)-3hat(j)-7hat(k)`
    C
    `20hat(i)+3hat(j)-7hat(k)`
    D
    None of these
  • If vector hat(i)+hat(j)+hat(k), hat(i)-hat(j)+hat(k) and 2hat(i)+3hat(j)+lambda hat(k) are coplanar, then lambda is equal to

    A
    `-2`
    B
    3
    C
    2
    D
    `-3`
  • If vector hat(i)+hat(j)+hat(k), hat(i)-hat(j)+hat(k) and 2hat(i)+3hat(j)+lambda hat(k) are coplanar, then lambda is equal to

    A
    `-2`
    B
    3
    C
    2
    D
    `-3`
  • Similar Questions

    Explore conceptually related problems

    If a=hat(i)+hat(j)+hat(k), b=2hat(i)+lambda hat(j)+hat(k), c=hat(i)-hat(j)+4hat(k) and a.(b xx c)=10 , then lambda is equal to

    If a=hat(i)+hat(j)+hat(k), b=2hat(i)+lambda hat(j)+hat(k), c=hat(i)-hat(j)+4hat(k) and a.(b xx c)=10 , then lambda is equal to

    Let a=hat(i)+hat(j)+hat(k), b=-hat(i)+hat(j)+hat(k), c=hat(i)-hat(j)+hat(k) and d=hat(i)+hat(j)-hat(k) . Then, the line of intersection of planes one determined by a, b and other determined by c, d is perpendicular to

    If a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), and hat(i)+hat(j)+c hat(k) are coplanar vectors, then what is the value of a+b+c-abc?

    Given p=3hat(i)+2hat(j)+4hat(k), a=hat(i)+hat(j), b=hat(j)+hat(k), c=hat(i)+hat(k) and p=x a +y b +z c , then x, y and z are respectively