Statement 1: For every natural number `ngeq2`
, `1/(sqrt(1))+1/(sqrt(2))+...+1/(sqrt(n))>sqrt(n)`
.
Statement
2: For every natural number `ngeq2,""n(n+1)
JEE MAINS PREVIOUS YEAR|Exercise All Questions|14 Videos
MATHEMATICAL REASONING
JEE MAINS PREVIOUS YEAR|Exercise All Questions|6 Videos
Similar Questions
Explore conceptually related problems
Statement-1: For every natural number nge2 , (1)/(sqrt(1))+(1)/(sqrt(2))+(1)/(sqrt(3))+...+(1)/(sqrt(n))gtsqrt(n) Statement-2: For every natural number nge2, sqrt(n(n+1))ltn+1
For all n in N,1+(1)/(sqrt(2))+(1)/(sqrt(3))+(1)/(sqrt(4))++(1)/(sqrt(n))
Property 8 For every natural number n(n+1)^(2)-n^(2)=(n+1)+n
lim_(n rarr4)(sqrt(2n+1)-3)/(sqrt(n-1)-sqrt(2))
sum_(n=1)^(oo)(1)/(sqrt(n)+sqrt(n+1))
lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]
Knowledge Check
Statement-1: For every natural number nge2 , (1)/(sqrt(1))+(1)/(sqrt(2))+(1)/(sqrt(3))+...+(1)/(sqrt(n))gtsqrt(n) Statement-2: For every natural number nge2, sqrt(n(n+1))ltn+1
A
1
B
2
C
3
D
4
For every natural number n (n + 1) is always
A
Even
B
Odd
C
Multiple of 3
D
Multiple of 4
For every natural number n,n (n^(2)-1) is divisible by