Home
Class 11
PHYSICS
The angle between vec A= hat i- + hat j...

The angle between ` vec A= hat i- + hat j` and ` vec B= hat i- hat j` is.

A

` 45^@`

B

` 90^@`

C

` -45^@`

D

` 180^@`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \(\vec{A} = \hat{i} + \hat{j}\) and \(\vec{B} = \hat{i} - \hat{j}\), we can follow these steps: ### Step 1: Write down the vectors We have: \[ \vec{A} = \hat{i} + \hat{j} \] \[ \vec{B} = \hat{i} - \hat{j} \] ### Step 2: Calculate the dot product of the vectors The dot product \(\vec{A} \cdot \vec{B}\) is given by: \[ \vec{A} \cdot \vec{B} = (1)(1) + (1)(-1) = 1 - 1 = 0 \] ### Step 3: Calculate the magnitudes of the vectors The magnitude of \(\vec{A}\) is: \[ |\vec{A}| = \sqrt{(1)^2 + (1)^2} = \sqrt{1 + 1} = \sqrt{2} \] The magnitude of \(\vec{B}\) is: \[ |\vec{B}| = \sqrt{(1)^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2} \] ### Step 4: Use the dot product to find the cosine of the angle The cosine of the angle \(\theta\) between the vectors is given by the formula: \[ \cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| |\vec{B}|} \] Substituting the values we calculated: \[ \cos \theta = \frac{0}{\sqrt{2} \cdot \sqrt{2}} = \frac{0}{2} = 0 \] ### Step 5: Calculate the angle \(\theta\) Since \(\cos \theta = 0\), we find: \[ \theta = \cos^{-1}(0) = 90^\circ \] ### Conclusion The angle between the vectors \(\vec{A}\) and \(\vec{B}\) is \(90^\circ\). ---

To find the angle between the vectors \(\vec{A} = \hat{i} + \hat{j}\) and \(\vec{B} = \hat{i} - \hat{j}\), we can follow these steps: ### Step 1: Write down the vectors We have: \[ \vec{A} = \hat{i} + \hat{j} \] \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • KINEMATICS

    PRADEEP|Exercise 3 NCERT multiple|161 Videos
  • KINEMATICS

    PRADEEP|Exercise 4 NCERT multiple Choice|10 Videos
  • KINEMATICS

    PRADEEP|Exercise 1 NCERT multiple|11 Videos
  • GRAVIATION

    PRADEEP|Exercise Assertion-Reason Type Questions|19 Videos
  • LAWS OF MOTION

    PRADEEP|Exercise Assertion- Reason Type Questions|17 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the vectors vec a=hat i-hat j+hat k and vec b=hat i+hat j-hat j-hat k

Find angle between the vectors vec a=hat i+hat j-hat k and vec b=hat i-hat j+hat k

Knowledge Check

  • The unit vector perpendicular to vec A = 2 hat i + 3 hat j + hat k and vec B = hat i - hat j + hat k is

    A
    `(4hati-hatj-5hatk)/(sqrt(42))`
    B
    `(4hati-hatj+5hatk)/(sqrt(42))`
    C
    `(4hati+hatj+5hatk)/(sqrt(42))`
    D
    `(4hati+hatj-5hatk)/(sqrt(42))`
  • Similar Questions

    Explore conceptually related problems

    Find the angel between the vectors vec a=hat i-hat j+hat k and vec b=hat i+hat j-hat k

    Find vec adot vec b , when (i) vec a= hat i-2 hat j+ hat k and vec b=4 hat i-4 hat j+7 hat k (ii) vec a= hat j+2hat k and vec b = 2 hat i+ hat k (iii) vec a= hat j-hat k andvec b= 2 hat i+3 hat j-2 hat k

    Find the sine of the angle between the vectors vec A = 3 hat i - 4 hat j + 5 hat k and vec B = hat i - hat j + hat k .

    Find the vector of magnitude 3, bisecting the angle between the vectors vec a=2hat i+hat j-hat k and vec b=hat i-2hat j+hat k

    Find the angle between the vectors vec A = hat I + 2 hat j- hat k and vec B =- hat I + hatj - 2 hat k .

    If vec a= hat i+ hat j+ hat k , vec b=2 hat i- hat j+3 hat k a n d vec c= hat i-2 hat j+ hat k find a unit vector parallel to 2 vec a- vec b+3 vec cdot

    The angle between the two vectors vec A= 3 hat i + 4 hat j + 5 hat k and vec B = 3 hat i + 4 hat j + 5 hat k will be