Home
Class 12
MATHS
(1+x^(2))(dy)/(dx)+y=e^(tan^(-1)x)...

`(1+x^(2))(dy)/(dx)+y=e^(tan^(-1)x)`

A

`2ye^(tan-1x)=e^(2tan-1x)+C`

B

`ye^(tan-1x)=e^(2tan-1x)+C`

C

`2ye^(tan-1x)=e^(2tan-1x)+C`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise For Session 4|10 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise For Session 5|8 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise For Session 2|15 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 10|4 Videos

Similar Questions

Explore conceptually related problems

y^(2)-(dy)/(dx)=x^(2)(dy)/(dx) A) y^(-1)+tan^(-1)x=c B) x^(-1)+tan^(-1)y=c C) y+tan^(-1)x=c D) x^(-1)+y^(-1)=tan^(-1)x+c

Solve: (1+x^2) dy/dx+y=e^(tan^-1x)

(dy)/(dx)=1+x tan(y-x)

(x-y)(1-(dy)/(dx))=e^(x)

Find dy/dx if y=e^(tan^-1(x^2)

If y = f(x) and x = g(y), where g is the inverse of f, i.e., g = f^(-1) and if (dy)/(dx) and (dx)/(dy) both exist and (dx)/(dy) ne 0 , show that (dy)/(dx) = (1)/((dx//dy)) . Hence, (1) find (d)/(dx) (tan^(-1)x) (2) If y=sin^(-1)x, -1lexle1, -(pi)/(2)leyle(pi)/(2) , then show that (dy)/(dx)=(1)/(sqrt(1-x^(2))) where |x| lt 1 .

(x (dy) / (dx) -y) tan ^ (- 1) ((y) / (x)) = x

e^(-x) (dy)/(dx) = y(1+ tanx + tan^(2) x)