Home
Class 12
MATHS
(1+x^(2))(dy)/(dx)+y=e^(tan^(-1)x)...

`(1+x^(2))(dy)/(dx)+y=e^(tan^(-1)x)`

A

`2ye^(tan-1x)=e^(2tan-1x)+C`

B

`ye^(tan-1x)=e^(2tan-1x)+C`

C

`2ye^(tan-1x)=e^(2tan-1x)+C`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise For Session 4|10 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise For Session 5|8 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise For Session 2|15 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 10|4 Videos

Similar Questions

Explore conceptually related problems

Solve: (1+x^2) dy/dx+y=e^(tan^-1x)

(dy)/(dx)=1+x tan(y-x)

Knowledge Check

  • y^(2)-(dy)/(dx)=x^(2)(dy)/(dx) A) y^(-1)+tan^(-1)x=c B) x^(-1)+tan^(-1)y=c C) y+tan^(-1)x=c D) x^(-1)+y^(-1)=tan^(-1)x+c

    A
    `y^(-1)+tan^(-1)x=c`
    B
    `x^(-1)+tan^(-1)y=c`
    C
    `y+tan^(-1)x=c`
    D
    `x^(-1)+y^(-1)=tan^(-1)x+c`
  • The solution of the differential equation (1+y^(2)) dx + (x-e^(-tan^(-1)y) dy = 0 is

    A
    `ye ^(tan^(-1)x ) = tan^(-1) x + C`
    B
    `xe ^(tan^(-1)y ) = tan^(-1) y + C`
    C
    `y = tan^(-1) x e^(tan^(-1)x) +C`
    D
    `y = xe^(tan^(-1)x) + C`
  • Similar Questions

    Explore conceptually related problems

    (x-y)(1-(dy)/(dx))=e^(x)

    Find dy/dx if y=e^(tan^-1(x^2)

    If y = f(x) and x = g(y), where g is the inverse of f, i.e., g = f^(-1) and if (dy)/(dx) and (dx)/(dy) both exist and (dx)/(dy) ne 0 , show that (dy)/(dx) = (1)/((dx//dy)) . Hence, (1) find (d)/(dx) (tan^(-1)x) (2) If y=sin^(-1)x, -1lexle1, -(pi)/(2)leyle(pi)/(2) , then show that (dy)/(dx)=(1)/(sqrt(1-x^(2))) where |x| lt 1 .

    IF y=e^(tan^(-1)x) then prove that : (1-x^(2))(d^2y)/(dx^2)+(2x-1)(dy)/(dx)=0 .

    (x (dy) / (dx) -y) tan ^ (- 1) ((y) / (x)) = x

    e^(-x) (dy)/(dx) = y(1+ tanx + tan^(2) x)