Home
Class 12
MATHS
Let y=f(x) satisfies the equation f(x)...

Let `y=f(x)` satisfies the equation
`f(x) = (e^(-x)+e^(x))cosx-2x-int_(0)^(x)(x-t)f^(')(t)dt`
y satisfies the differential equation

A

`(dy)/(dx)+y=e^(x)(cosx-sinx)-e^(-x)(cosx+sinx)`

B

`(dy)/(dx)-y=e^(x)(cosx-sinx)-e^(-x)(cosx+sinx)`

C

`(dy)/(dx)+y=e^(x)(cosx+sinx)-e^(-x)(cosx-sinx)`

D

`(dy)/(dx)-y=e^(x)(cosx-sinx)+e^(-x)(cosx-sinx)`

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Differential Equations Exerise 5 :|2 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|8 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|9 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 10|4 Videos

Similar Questions

Explore conceptually related problems

Find f(x) if it satisfies the relation f(x)=e^(x)+int_(0)^(1)(x+ye^(x))f(y)dy

A Function f(x) satisfies the relation f(x)=e^(x)+int_(0)^(1)e^(x)f(t)dt* Then (a)f(0) 0

Knowledge Check

  • Let y=f(x) satisfies the equation f(x) = (e^(-x)+e^(x))cosx-2x+int_(0)^(x)(x-t)f^(')(t)dt The value of f(0)+f^(')(0) equal

    A
    `-1`
    B
    0
    C
    1
    D
    1
  • Let y=f(x) satisfies the equation f(x)=(e^(-x)+e^(x)) cosx-2x-int_(0)^(x)(x-t)f'(t)dt. The value of f'(0)+f''(0)equals to

    A
    -1
    B
    2
    C
    1
    D
    0
  • If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

    A
    `a=(1)/(3-2e)`
    B
    `f(x)=e^(x)-2e^(2x)`
    C
    `a=(1)/(e)`
    D
    `f(x)=e^(x)-e^(-x)`
  • Similar Questions

    Explore conceptually related problems

    y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The range of y=f(x) is

    A continuous function f(x) satisfies the relation f(x)=e^(x)+int_(0)^(1)e^(x)f(t)dt then f(1)=

    If f(x)=cos-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals

    A differentiable function y=g(x) satisfies int_(0)^(x)(x-t+1)g(t)dt=x^(4)+x^(2) for all x>=0 then y=g(x) satisfies the differential equation

    Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval