Home
Class 12
MATHS
Let f(x) = tan^(-1)(((x-2))/(x^(2)+2x+2)...

Let `f(x) = tan^(-1)(((x-2))/(x^(2)+2x+2))`,then `26 f'(1)` is

Text Solution

Verified by Experts

The correct Answer is:
9
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Matching Type Questions)|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|14 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=tan^(-1)((x^(3)-1)/(x^(2)+x)) , then the value of 17f'(2) is equal to

Let f(x)=sin^(-1)((2x)/(1+x^(2))) the value of f'(2) is

Knowledge Check

  • If f(x)=tan^(-1) ((2x)/(1-x^(2))), x in R "then "f'(x) is given by

    A
    `f'(x)=(2)/(1+x^(2))"for all x"in R (-1,1)`
    B
    `f'(x)=(2)/(1+x^(2))"for all x"in R`
    C
    `F'(x)={{:(,(2)/(1+x^(2)),"if "|x| le 1),(,(-2)/(1+x^(2)),"if |x| gt 1):}`
    D
    `f'(x)={{:(,(2)/(1+x^(2)),"if "|x| lt 1),(,(-2)/(1+x^(2)),"if |x| gt 1):}`
  • Let f(x) = sin^(-1)((2x)/(1+x^(2))) Statement I f'(2) = - 2/5 and Statement II sin^(-1)((2x)/(1 +x^(2))) = pi - 2 tan^(-1) x, AA x gt 1

    A
    Statement I is True, Statement II is True, Statement II is a correct explanation for statement I
    B
    Statement I is True, Statement II is True, Statement II is NOT a correct explanation for Statement I
    C
    Statement I is True, Statement II is False
    D
    Statement I is False, Statement II is True.
  • If f(x) = tan^(-1) ((2cot^(2)x)/(1 + cos^(2)x)) then d/(dx) (f(f(x))) at x = pi/2 is

    A
    0
    B
    1
    C
    `-1`
    D
    `1/2`
  • Similar Questions

    Explore conceptually related problems

    If f(x)=(tan^(-1)x)^(2) +(2)/(sqrt(x^(2)+1)) then f(x) is increasing in

    Let f(x) = 2 tan^(-1)x + "sin"^(-1) (2x)/(1 + x^(2)) then

    Let f(x) = tan^(-1) x and g(x) = (x)/(1 + x^(2)), x gt 0 then

    If f(x) = 2 tan^(-1)x + sin^(-1)((2x)/(1+x^(2))), x gt 1 , then f(5) is equal to

    Let f : I - {-1,0,1} to [-pi, pi] be defined as f(x) = 2 tan^(-1) x - tan^(-1)((2x)/(1 -x^(2))) , then which of the following statements (s) is (are) correct ?