Home
Class 12
MATHS
Solve sin^(-1) (5/x) + sin^(-1)(12/x) = ...

Solve `sin^(-1) (5/x) + sin^(-1)(12/x) = pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1} \left( \frac{5}{x} \right) + \sin^{-1} \left( \frac{12}{x} \right) = \frac{\pi}{2} \), we can follow these steps: ### Step 1: Use the identity for inverse sine We know that: \[ \sin^{-1}(a) + \sin^{-1}(b) = \frac{\pi}{2} \implies a^2 + b^2 = 1 \] In our case, let \( a = \frac{5}{x} \) and \( b = \frac{12}{x} \). Therefore, we can write: \[ \left( \frac{5}{x} \right)^2 + \left( \frac{12}{x} \right)^2 = 1 \] ### Step 2: Simplify the equation Squaring the terms gives: \[ \frac{25}{x^2} + \frac{144}{x^2} = 1 \] Combining the fractions: \[ \frac{25 + 144}{x^2} = 1 \] This simplifies to: \[ \frac{169}{x^2} = 1 \] ### Step 3: Cross-multiply to solve for \( x^2 \) Cross-multiplying gives: \[ 169 = x^2 \] ### Step 4: Take the square root Taking the square root of both sides yields: \[ x = \pm 13 \] ### Conclusion Thus, the solutions are: \[ x = 13 \quad \text{and} \quad x = -13 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|1 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos

Similar Questions

Explore conceptually related problems

Solve sin^(-1) (1 - x) - 2 sin^(-1) x = (pi)/(2)

(i) Solve : 4 sin ^(-1) .(5)/(x) + sin ^(-1).(12)/(x)=(pi)/(2) (ii) slove : sin ^(-1).(5)/(x)+ sin ^(-1).(12)/(x) =(pi)/(2)

Knowledge Check

  • If "sin"^(-1)(5)/(x) +"sin"^(-1)(12)/(x)=(pi)/(2) , then what is the value of x?

    A
    1
    B
    7
    C
    13
    D
    17
  • If sin^(-1)""(5)/(x)+sin^(-1)""(12)/(x)=(pi)/(2) , then what is the value x?

    A
    1
    B
    7
    C
    13
    D
    17
  • Similar Questions

    Explore conceptually related problems

    Solve : sin^(-1)( x) + sin^(-1)( 2x) = sin^(-1)(sqrt(3)/2) .

    solve: sin ^ (- 1) x + sin ^ (- 1) 2x = (pi) / (3)

    Solve sin^(-1)x + sin^(-1) 2x = (pi)/(3)

    Solve sin^(-1)(1-x)-2sin^(-1)x=(pi)/(2)

    Number of value of x satisfying the equation sin^(-1)((5)/(x))+sin^(-1)((12)/(x))=(pi)/(2) is (A) 0(B)1(C)2(D) more than 2

    Solve: sin^(-1)x + sin^(-1)2x = pi/3 .