Home
Class 10
MATHS
Prove that (1+tantheta)^(2)+(1+cottheta...

Prove that `(1+tantheta)^(2)+(1+cottheta)^(2)=(sectheta+"cosec "theta)^(2)` .

Promotional Banner

Topper's Solved these Questions

  • CHALLENGING QUESTIONS

    TARGET PUBLICATION|Exercise Mesuration|4 Videos
  • CHALLENGING QUESTIONS

    TARGET PUBLICATION|Exercise BASIC CONCEPTS IN GEOMETRY|13 Videos
  • CHALLENGING QUESTIONS

    TARGET PUBLICATION|Exercise Co-ordinate geometry|13 Videos
  • BOARD QUESTION PAPER: MARCH 2019

    TARGET PUBLICATION|Exercise (Solve the following questions (Any one):|4 Videos
  • CIRCLE

    TARGET PUBLICATION|Exercise Chapter Assessment|9 Videos

Similar Questions

Explore conceptually related problems

prove that: (1-tan theta)^2+(1-cot theta)^2=(sec theta - cosec theta)^2

Prove that (1+tan theta )^2 + (1+cot theta)^2 = (sec theta + cosec theta)^2

1+cottheta="cosec"theta

((1-tantheta)/(1-cottheta))^(2)+1=

Prove that : (tan theta)/(sectheta+1)-(tantheta)/(1-sectheta)=2cosec theta

Prove that : sintheta(1+tantheta)+costheta(1+cottheta)=cosectheta+sectheta

i) Prove that: (1+tan^(2)A)/(1-tan^(2)A) xx (2 cos^(2) A-1)=1 ii) Prove that: (tantheta)/(1+cottheta)+(cottheta)/(1+tantheta) = "cosec"theta.sectheta-1

Prove that- (sectheta+tantheta)/(sec-tantheta)=((1+sintheta)/costheta)^2

Prove that : sqrt((1+costheta)/(1-costheta))="cosec"theta+cottheta

Prove that : (tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)=1+sectheta" cosec "theta