Home
Class 12
PHYSICS
A glass rod of radius r(1) is inserted s...

A glass rod of radius `r_(1)` is inserted symmetrically into a vertical capillary tube of radius `r_(2)` such that their lower ends are at the same level. The arrangement is now dipped in water. The height to which water will rise into the tube will be (`sigma =` surface tension of water, `rho = ` density of water)

A

`(T)/((R+r)pg)`

B

`(Rpg)/(2T)`

C

`(2T)/((R-r)pg)`

D

`((R-r)pg)/(T)`

Text Solution

Verified by Experts

The correct Answer is:
C

`2Tcostheta=hpgR`
`h=(2T)/(pgr)=(2T)/((R-r)pg)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MHT-CET 2016

    NIKITA PUBLICATION|Exercise WAVE MOTION|1 Videos
  • MHT-CET 2016

    NIKITA PUBLICATION|Exercise STATIONARY WAES|4 Videos
  • MHT-CET 2016

    NIKITA PUBLICATION|Exercise ELASTICITY|2 Videos
  • MH-CET - 2017

    NIKITA PUBLICATION|Exercise CUMMUNICATION SYSTEMS|1 Videos
  • OSCILLATIONS

    NIKITA PUBLICATION|Exercise MCQ|493 Videos

Similar Questions

Explore conceptually related problems

A glass rod of radius 0.1 mm is inserted symmetrically into a vertical capillar tube of radius 0.2 mm such that their lower ends are at same level. If this arrangement is dipped in water then what will be the height of water rised in the tube? (Take surface tension of water =0.07N//m,g=10m//s^(2))

A capillary tube of radius 0.5 mm is dipped in a vessel containing water. Calculate the height to which water will rise in the capillary tube. Take, surface tension of water =7.4 xx 10^(-3)" N/m".

Knowledge Check

  • In a capillary tube of radius 'R' a straight thin metal wire of radius 'r' ( Rgtr) is inserted symmetrically and one of the combination is dipped vertically in water such that the lower end of the combination Is at same level . The rise of water in the capillary tube is [T=surface tensiono of water rho =density of water ,g =gravitational acceleration ]

    A
    `T/((R+r)rhog)`
    B
    `(Rrhog)/(2T)`
    C
    `(2T)/((R-r)rhog)`
    D
    `((r-r)rhog)/T`
  • If a capillary tube of diameter 0.4 m is dipped vertically into water, then the height to which water rises in the capillary tube will be ,

    A
    `7.143` cm
    B
    `0 . 013` cm
    C
    `714 .3` cm
    D
    7143 cm s
  • If the capillary tubes of different redii 'r' dipped in water, then the height 'h' of water in the tubes will be such so that

    A
    `(h)/(r)=` const,
    B
    hr= const,
    C
    `(h)/(r^2)` = const,
    D
    `hr^2` = const.
  • Similar Questions

    Explore conceptually related problems

    A thin capillary of inner radius r_(1) and outer radius r_(2) (The inner tube is solid) is dipped in water. To how much height will the water raise in the tube ? (Assume contact angle theta rarr 0 )

    A glass rod of radius 1 mm is inserted symmetrically into a glass capillary tube with inside radius 2 mm . Then the whole arrangement is brought in contact of the surface of water. Surface tension of water is 7 xx 10^(-2) N//m . To what height will the water rise in the capillary? ( theta = 0^@ )

    Water rises to a height of 30 mm in a capillary tube. If the radius of the capillary tube is made 3//4 of its previous value. The height to which the water will rise in the tube is

    Water rises to a height of 30 mm in a capillary tube , if the radius of the capillary tube is made (3//4)^(th) of the previous value , then the height to which the water rise in the tube will be

    A capillary tube of the radius r is immersed in water and water rise in it to a height H. Mass of water in the capillary tube is m. If the capillary of radius 2r is taken and dipped in water, the mass of water that will rise in the capillary tube will be