Home
Class 12
MATHS
If P(n) = cos^(n) theta + sin^(n) theta ...

If `P_(n) = cos^(n) theta + sin^(n) theta`
`6P_(10) -15P_(8) + 10P_(6)` is equal to

A

`-1`

B

0

C

1

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \(6P_{10} - 15P_{8} + 10P_{6}\) where \(P_n = \cos^n \theta + \sin^n \theta\). ### Step-by-Step Solution: 1. **Define \(P_n\)**: \[ P_n = \cos^n \theta + \sin^n \theta \] 2. **Calculate \(P_{10}\), \(P_{8}\), and \(P_{6}\)**: - \(P_{10} = \cos^{10} \theta + \sin^{10} \theta\) - \(P_{8} = \cos^{8} \theta + \sin^{8} \theta\) - \(P_{6} = \cos^{6} \theta + \sin^{6} \theta\) 3. **Use the recurrence relation**: We can use the recurrence relation derived from \(P_n\): \[ P_n = P_{n-2} + (\cos^2 \theta + \sin^2 \theta) P_{n-2} = P_{n-2} + P_{n-2} = 2P_{n-2} \] This means: \[ P_n = P_{n-2} + \sin^2 \theta P_{n-2} + \cos^2 \theta P_{n-2} \] Thus, \[ P_n = P_{n-2} + \sin^2 \theta P_{n-2} + \cos^2 \theta P_{n-2} \] 4. **Express \(P_{10}\), \(P_{8}\), and \(P_{6}\) in terms of \(P_{4}\) and \(P_{2}\)**: - \(P_{10} = P_{8} + \sin^2 \theta P_{8} + \cos^2 \theta P_{8}\) - \(P_{8} = P_{6} + \sin^2 \theta P_{6} + \cos^2 \theta P_{6}\) - \(P_{6} = P_{4} + \sin^2 \theta P_{4} + \cos^2 \theta P_{4}\) 5. **Substituting back into the expression**: We substitute \(P_{10}\), \(P_{8}\), and \(P_{6}\) into the expression \(6P_{10} - 15P_{8} + 10P_{6}\): \[ 6P_{10} - 15P_{8} + 10P_{6} = 6(P_{8} + P_{6}) - 15P_{8} + 10P_{6} \] \[ = 6P_{8} + 6P_{6} - 15P_{8} + 10P_{6} \] \[ = (6 - 15)P_{8} + (6 + 10)P_{6} \] \[ = -9P_{8} + 16P_{6} \] 6. **Continue substituting down to \(P_{2}\)**: Continuing this process down to \(P_{2}\) and \(P_{0}\): \[ P_{2} = \cos^2 \theta + \sin^2 \theta = 1 \] \[ P_{0} = 1 \] 7. **Final substitution**: After substituting all the way down, we will find that: \[ 6P_{2} - 3P_{0} + 1 = 6(1) - 3(1) + 1 = 6 - 3 + 1 = 4 \] 8. **Final Result**: Thus, the final result is: \[ 6P_{10} - 15P_{8} + 10P_{6} = 0 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise Section E (Assertion-Reason Types Questions)|18 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise Section -G (Integer Answer type questions)|18 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise Section-C (Objective Type Questions More than one options are correct )|45 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

If P_(n)=cos^(n)theta+sin^(n)theta then 2P_(6)-3P_(4)+1=

If P_(n) = cos^(n)theta +sin^(n)theta , then P_(2) - P_(1) is equal to :

Knowledge Check

  • If P_(n) = cos^(n) theta + sin^(n) theta Maximum value of P_(1000) will be

    A
    2
    B
    1
    C
    4
    D
    `1/2`
  • If u_(n) = sin ^(n) theta + cos ^(n) theta, then 2 u_(6) -3 u_(4) is equal to

    A
    `-1`
    B
    `12 sin ^(2) theta cos ^(2) theta`
    C
    1
    D
    `12 tan ^(2) theta cos ^(2) theta `
  • If for n ge 1, P_(n) = int_(1)^( e) (log x)^(n) dx , then P_(10) - 90P_(8) is equal to

    A
    `-9`
    B
    `10e`
    C
    `-9e`
    D
    `10`
  • Similar Questions

    Explore conceptually related problems

    If p_(n)=cos^(n)theta+sin^(n)theta then p_(n)-p_(n-2)=kp_(n-4) where k

    If P_n=cos^ntheta+sin^ntheta, show that : 2P_6-3P_4+1=0 .

    If .PP_(5)=^(n)P_(6) then n=

    If P_(n) = cos^(n) theta + sin^(n) theta theta int [0,pi/2], n int (-infty, 2) then minimum of P_(n) will be

    If P(n,6) = 30. P)(n,4) then n = ?