Home
Class 11
PHYSICS
If y=2x^(3)+3x^(2)+6x+1, then (dy)/(dx) ...

If `y=2x^(3)+3x^(2)+6x+1`, then `(dy)/(dx)` will be `-`

A

`6(x^(2)+x+1)`

B

`6(x^(2)+x_2)`

C

`6x^(2)+3x`

D

`(x^(2)+6x+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) of the function \( y = 2x^3 + 3x^2 + 6x + 1 \), we will apply the rules of differentiation step by step. ### Step 1: Identify the function We have the function: \[ y = 2x^3 + 3x^2 + 6x + 1 \] ### Step 2: Differentiate each term We will differentiate each term of the function separately using the power rule of differentiation, which states that \( \frac{d}{dx}(x^n) = n \cdot x^{n-1} \). 1. Differentiate \( 2x^3 \): \[ \frac{d}{dx}(2x^3) = 2 \cdot 3x^{3-1} = 6x^2 \] 2. Differentiate \( 3x^2 \): \[ \frac{d}{dx}(3x^2) = 3 \cdot 2x^{2-1} = 6x \] 3. Differentiate \( 6x \): \[ \frac{d}{dx}(6x) = 6 \cdot 1 = 6 \] 4. Differentiate the constant \( 1 \): \[ \frac{d}{dx}(1) = 0 \] ### Step 3: Combine the derivatives Now, we will combine the results from the differentiation of each term: \[ \frac{dy}{dx} = 6x^2 + 6x + 6 \] ### Step 4: Factor the expression (optional) We can factor out the common factor of \( 6 \): \[ \frac{dy}{dx} = 6(x^2 + x + 1) \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = 6(x^2 + x + 1) \]

To find the derivative \( \frac{dy}{dx} \) of the function \( y = 2x^3 + 3x^2 + 6x + 1 \), we will apply the rules of differentiation step by step. ### Step 1: Identify the function We have the function: \[ y = 2x^3 + 3x^2 + 6x + 1 \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DAILY PRACTICE PROBLEMS

    RESONANCE|Exercise DPP NO 7 PHYSICS|4 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE|Exercise DPP 8 PHYSICS|7 Videos
  • DAILY PRACTICE PROBLEMS

    RESONANCE|Exercise DPP NO. 5 Physics|6 Videos
  • CURRENT ELECTRICITY

    RESONANCE|Exercise Exercise|54 Videos
  • ELASTICITY AND VISCOCITY

    RESONANCE|Exercise Advanced Level Problems|9 Videos

Similar Questions

Explore conceptually related problems

If y=[3x+2][2x-1] , then find (dy)/(dx) .

If y=x^(2)+2x+3, then : int((dx)/(dy))dx=

Knowledge Check

  • If y = (1)/( (x^(2) +3)) , then (dy)/(dx) =

    A
    ` ( -2x)/( (x^(2)+3)^(2) ) `
    B
    ` (2x)/( (x^(2) +3)^(3))`
    C
    ` (-4x) /( (x^(2) +3) ^(2))`
    D
    ` (4x)/( (x^(2) +3) ^(3))`
  • If y = x^(4) + 2 x^(2) + 3x + 1 , then (dy)/(dx) at x = 1 is

    A
    10
    B
    11
    C
    12
    D
    7
  • If y^(3) - 3y^(2) x=x^(3) +3x^(2) y,then (dy)/(dx)=

    A
    `(x^(2) +2xy +y^(2))/( y^(2)- 2xy -x^(2))`
    B
    `(x^(2) +2xy +y^(2))/( y^(2)+ 2xy -x^(2))`
    C
    `(x^(2) -2xy -y^(2))/( y^(2)+ 2xy +x^(2))`
    D
    `(x^(2) + 2xy -y^(2))/( y^(2)+ 2xy +x^(2))`
  • Similar Questions

    Explore conceptually related problems

    If y=6 x^(5)-4x^(4)+2x^(2)+3x+2 , then find (dy)/(dx) at x=-1.

    If y=(2x+3)^((3x-5)) , find (dy)/(dx) .

    y=(x+3)^(1/2) then dy/dx=?

    If y=tan^(-1) (3x^(2)+2),"then "dy/dx=

    If y=3x^2+2x , then find dy//dx .